Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100504    DOI: 10.1088/1674-1056/22/10/100504
GENERAL Prev   Next  

Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance

Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕)
Hebei Engineering Research Center of Simulation & Optimized Control for Power Generation(North China Electric Power University), Baoding 071003, China
Abstract  Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen’s chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
Keywords:  fractional-order chaotic system      modified projective synchronization      uncertainty      disturbance  
Received:  04 March 2013      Revised:  15 April 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61203041) and the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49).
Corresponding Authors:  Zhang Jin-Ying     E-mail:  k.ying_zhang@163.com

Cite this article: 

Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕) Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance 2013 Chin. Phys. B 22 100504

[1] Bagley R L and Calico R A 2012 Journal of Guidance, Control, and Dynamics 14 304
[2] Ichise M, Nagayanagi Y and Kojima T 1971 J. Electroanal. Chem. Interfacial Electrochem. 33 253
[3] Ezzat M A 2011 Appl. Math. Mod. 35 4965
[4] Laskin N 2000 Physica A 287 482
[5] Sun H, Abdelwahab A and Onaral B 1984 IEEE Trans. Autom. Control 29 441
[6] Podlubny I 1999 Fractional Differential Equation (New York: Academic Press) pp. 41-48, 71
[7] Vinagre B M, Podlubny I, Hernandez A and Feliu V 2000 Fractional Calculus and Applied Analysis 3 231
[8] Yang Q G and Zeng C B 2010 Commun. Nonlinear Sci. Numer. Simul. 15 4041
[9] Ge Z M and Ou C Y 2007 Chaos, Solitons and Fractals 34 262
[10] Zhu H, Zhou S B and Zhang J 2009 Chaos, Solitons and Fractals 39 1595
[11] Lu J G and Chen G R 2006 Chaos, Solitons and Fractals 27 685
[12] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[13] Aghababa M P and Akbari M E 2012 Appl. Math. Comput. 218 5757
[14] Wei W, Li D H and Wang J 2010 Chin. Phys. B 19 040507
[15] Pourgholi M and Majd V J 2011 Chin. Phys. B 20 120503
[16] Duan Z S and Chen G R 2012 Chin. Phys. B 21 080506
[17] Zhao L, Liao X F, Xiang T and Xiao D 2009 Chin. Phys. Lett. 26 060502
[18] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[19] Dong E Z, Chen Z Q, Chen Z P and Ni J Y 2012 Chin. Phys. B 21 030501
[20] Hua C C and Guan X P 2004 Chin. Phys. Lett. 21 1441
[21] Pei W, Lü J H and Ogorzalek M J 2012 Neurocomputing 78 155
[22] Chen Y, Lü J H and Lin Z 2013 Automatica (http://dx.doi.org/10.1016/j.automatica. 2013.02.021.)
[23] Zhu J D, Lü J H and Yu X H 2013 IEEE Trans. Circ. Syst. Regul. Pap. 60 199
[24] Lü J H, Yu X H, Chen G R and Cheng D Z 2004 IEEE Trans. Circ. Syst. Regul. Pap. 51 787
[25] Lü J H and Chen G R 2005 IEEE Trans. Autom. Control 50 841
[26] Liu H, Lu J A, Lü J H and Hill D J 2009 Automatica 45 1799
[27] Zhou J, Lu J A and Lü J H 2006 IEEE Trans. Autom. Control 51 652
[28] Wang Z, Huang X and Zhao Z 2012 Nonlinear Dyn. 69 999
[29] Wang X Y, Zhang X P and Ma C 2012 Nonlinear Dyn. 69 511
[30] Chen L P, Wei S B, Chai Y and Wu R C 2012 Math. Probl. Eng. 2012 1
[31] Martinez-Martinez R, Mata-Machuca J L, Martinez-Guerra R, Leon J A and Fernandez-Anaya G 2011 Appl. Math. Comput. 218 3338
[32] Zheng S 2012 Appl. Math. Comput. 218 5891
[33] Xu J Q Proceedings of the 30th Chinese Control Conference, July 22-24, 2011, Yantai, China, pp. 2423-2428
[34] Zhou P and Ding R 2012 Indian J. Phys. 86 497
[35] Yang C C 2012 J. Franklin Inst. 349 349
[36] Zhang R X and Yang S P 2012 Nonlinear Dyn. 69 983
[37] Xiang W and Chen F Q 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2970
[38] Li G H 2007 Chaos, Solitons and Fractals 32 1786
[39] Li Y, Chen Y Q and Podlubny I 2010 Comput. Math. Appl. 59 1810
[40] Ye M Y 2005 Acta Phys. Sin. 54 30 (in Chinese)
[41] Li C P and Yan J P 2007 Chaos, Solitons and Fractals 32 751
[42] Caponetto R, Dongola G and Fortuna L 2010 Fractional Order Systems: Modeling and Control Applications (Hackensack: World Scientific) p. 62
[43] Li C G and Chen G R 2004 Chaos, Solitons and Fractals 22 549
[44] Chen G R and Ueta T 1999 Int. J. Bifur. Chaos Appl. Sci. Eng. 9 1465
[45] Chen Y, Lü J H and Yu X H 2011 Sci. China: Technol. Sci. 54 2014
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[4] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[5] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[6] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[7] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[8] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[9] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[10] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[11] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[12] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[13] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[14] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[15] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
No Suggested Reading articles found!