Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 093101    DOI: 10.1088/1674-1056/22/9/093101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Vibrational transition spectra of H2+ in a strong magnetic field

Hu Shi-Lin (胡师林)a b, Shi Ting-Yun (史庭云)a
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Vibrational transition spectra of H2+ in an ultra-strong magnetic field are determined. The validity of Born-Oppenheimer approximation is analyzed based on one-center method and B-spline basis sets. It is shown that Born-Oppenheimer approximation is reliable for the investigation on the ground state and low excited states of H2+ subjected to the strong magnetic field. Furthermore, it is found that the vibrational transition spectra from 1σg, 1πu, and 1δg states lie in infrared, visible, and ultraviolet ranges with increasing magnetic field strength.
Keywords:  B-spline basis      one-center method      Born-Oppenheimer approximation      vibrational transition spectra  
Received:  27 February 2013      Revised:  02 April 2013      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  33.15.-e (Properties of molecules)  
  33.20.Tp (Vibrational analysis)  
Fund: Project Supported by the National Basic Research Program of China (Grant No. 2010CB832803).
Corresponding Authors:  Shi Ting-Yun     E-mail:  tyshi@wipm.ac.cn

Cite this article: 

Hu Shi-Lin (胡师林), Shi Ting-Yun (史庭云) Vibrational transition spectra of H2+ in a strong magnetic field 2013 Chin. Phys. B 22 093101

[1] Wang D H and Ding S L 2004 Chin. Phys. 13 30
[2] Wang D H, Song X X and Ding S L 2008 Chin. Phys. B 17 599
[3] Schmelcher P and Schweizer W 1998 Atoms and Molecules in Strong External Fields (New York: Plenum)
[4] Lai D 2001 Rev. Mod. Phys. 73 629
[5] Lai D, Salpeter E E and Shapiro S L 1992 Phys. Rev. A 45 4832
[6] López V J C and Turbiner A 2000 Phys. Rev. A 62 022510
[7] Olivares-Pilón H, Bayer D, Turbiner A V and López Vieyra J C 2010 J. Phys. B 43 065702
[8] de Melo L C, Das T K, Ferreira R C, Miranda L C M and Brandi H S 1978 Phys. Rev. A 18 12
[9] Kravchenko Y P and Liberman M A 1997 Phys. Rev. A 55 2701
[10] Turbiner A V and López Vieyra J C 2004 Phys. Rev. A 69 053413
[11] Turbiner A V and López Vieyra J C 2006 Phys. Rep. 424 309
[12] Guan X X, Li B W and Taylor K T 2003 J. Phys. B 36 3569
[13] Vincke M and Baye D 2006 J. Phys. B 39 2605
[14] Zhang Y X, Kang S and Shi T Y 2008 Chin. Phys. Lett. 25 3946
[15] Zhang Y X, Liu Q and Shi T Y 2012 J. Phys. B 45 085101
[16] Zhang Y X, Liu Q and Shi T Y 2013 Chin. Phys. Lett. 30 043101
[17] Schmelcher P, Cederbaum L S and Meyer H D 1988 Phys. Rev. A 38 6066
[18] Schmelcher P, Cederbaum L S and Meyer H D 1988 J. Phys. B 21 L445
[19] Lai D and Salpeter E E 1996 Phys. Rev. A 53 152
[20] Larsen D M 1982 Phys. Rev. A 25 1295
[21] Wille U 1987 J. Phys. B 20 L417
[22] Kempe J A and Goldman S P 1998 J. Chem. Phys. 108 7679
[23] Bachau H, Cormier E, Decleva P, Hansen J E and Martín F 2001 Rep. Prog. Phys. 64 1815
[24] Kang S, Liu Q, Zhong Z X, Zhang X Z and Shi T Y 2006 Acta Phys. Sin. 55 3380 (in Chinese)
[25] Meng H Y, Kang S, Shi T Y and Zhan M S 2007 Acta Phys. Sin. 56 3198 (in Chinese)
[26] Zhou X X, Li X Y and He Y L 2008 Acta Phys. Sin. 57 116 (in Chinese)
[27] Kang S, Li J and Shi T Y 2006 J. Phys. B 39 3491
[28] Carrington A, McNab I R and Montgomerie C A 1989 J. Phys. B 22 3551
[29] Beckel C L, Hansen B D and Peek J M 1970 J. Chem. Phys. 53 3681
[30] Le Guillou J C and Zinn-Justin J 1984 Ann. Phys. (N.Y.) 154 440
[31] Wunner G, Herold H and Ruder H 1982 Phys. Lett. A 88 344
[32] de Melo C P, Ferreira R, Brandi H S and Miranda L C M 1976 Phys. Rev. Lett. 37 676
[33] Sanwal D, Pavlov G G, Zavlin V E and Teter M A 2002 Astrophys. J. Lett. 574 L61
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[3] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[4] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[5] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[6] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[7] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[8] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[9] Tuning charge and orbital ordering in DyNiO3 by biaxial strain
Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢). Chin. Phys. B, 2021, 30(11): 117106.
[10] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[11] Band engineering of honeycomb monolayer CuSe via atomic modification
Lei Gao(高蕾), Yan-Fang Zhang(张艳芳), Jia-Tao Sun(孙家涛), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(10): 106807.
[12] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[13] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[14] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[15] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
No Suggested Reading articles found!