|
|
Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice |
Chen Ning (陈宁), Zhou Min (周敏), Chen Hai-Qin (陈海琴), Fang Su (方苏), Huang Liang-Yu (黄良玉), Zhang Xiao-Hang (张晓航), Gao Qi (高琪), Jiang Yan-Yi (蒋燕义), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生), Xu Xin-Ye (徐信业) |
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract An optical atomic clock with 171Yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6±3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171Yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171Yb atoms is obtained by measuring the dependence of the population of the ground-state 1S0 upon the clock-laser detuning.
|
Received: 11 March 2013
Revised: 08 April 2013
Accepted manuscript online:
|
PACS:
|
06.30.Ft
|
(Time and frequency)
|
|
32.30.-r
|
(Atomic spectra?)
|
|
37.10.De
|
(Atom cooling methods)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821302 and 2010CB922903), the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044), and the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400). |
Corresponding Authors:
Xu Xin-Ye
E-mail: xyxu@phy.ecnu.edu.cn
|
Cite this article:
Chen Ning (陈宁), Zhou Min (周敏), Chen Hai-Qin (陈海琴), Fang Su (方苏), Huang Liang-Yu (黄良玉), Zhang Xiao-Hang (张晓航), Gao Qi (高琪), Jiang Yan-Yi (蒋燕义), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生), Xu Xin-Ye (徐信业) Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice 2013 Chin. Phys. B 22 090601
|
[1] |
Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
|
[2] |
Falke S, Schnatz H, Vellore Winfred J S R, Middelmann T, Vogt S, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat C 2011 Metrologia 48 399
|
[3] |
McFerran J J, Yi L, Mejri S, Manno S D, Zhang W, Guéna J, Coq Y L and Bize S 2012 Phys. Rev. Lett. 108 183004
|
[4] |
Lemke N D, Ludlow A D, Barber Z W, Fortier T M, Diddams S A, Jiang Y, Jefferts S R, Heavner T P, Parker T E and Oates C W 2009 Phys. Rev. Lett. 103 063001
|
[5] |
Park C Y, Yu D H, Lee W K, Park S E, Kim E B, Lee S K, Cho J W, Yoon T H, Mun J, Park S J, Kwon T Y and Lee S B 2013 Metrologia 50 119
|
[6] |
Kohno T, Yasuda M, Hosaka K, Inaba H, Nakajima Y and Hong F L 2009 Appl. Phys. Express 2 072501
|
[7] |
Zhang J W and Yang D H 2007 Chin. Phys. Lett. 24 1553
|
[8] |
Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S and Oates C W 2011 Nat. photonic 5 158
|
[9] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[10] |
Xu X Y, Wang W L, Zhou Q H, Li G H, Jiang H L, Chen L F, Ye J, Zhou Z H, Cai Y, Tang H Y and Zhou M 2009 Front. Phys. China 4 160
|
[11] |
Wang W L and Xu X Y 2010 Chin. Phys. B 19 123202
|
[12] |
Jiang H L, Li G H and Xu X Y 2009 Opt. Express 17 16073
|
[13] |
Katori H 2011 Nat. photonics 5 203
|
[14] |
http://www.bipm.org/utils/common/pdf/CCTF19.pdf
|
[15] |
Cho J W, Lee H G, Lee S, Ahn J, Lee W K, Yu D H, Lee S K and Park C Y 2012 Phys. Rev. A 85 035401
|
[16] |
Yasuda M, Inaba H, Kohno T, Tanabe T, Nakajima Y, Hosaka K, Akamatsu D, Onae A, Suzuyama T, Amemiya M and Hong F L 2012 Appl. Phys. Express 5 102401
|
[17] |
Takamoto M, Hong F L, Higashi R, Fujii Y, Imae M and Katori H 2006 J. Phys. Soc. Jpn. 75 104302
|
[18] |
Ludlow A D 2008 The Strontium Optical Lattice Clock: Optical Spectroscopy with Sub-Hertz Accuracy (PhD thesis) (Colorado: University of Colorado)
|
[19] |
McFerran J J, Magalhães D V, Mandache C, Millo J, Zhang W, Coq Y L, Santarelli G and Bize S 2012 Opt. Lett. 37 3477
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|