|
|
Magneto–optical trap for neutral mercury atoms |
Liu Hong-Li (刘洪力)a, Yin Shi-Qi (尹士奇)a, Liu Kang-Kang (刘亢亢)a, Qian Jun (钱军)a, Xu Zhen (徐震)a, Hong Tao (洪涛)b, Wang Yu-Zhu (王育竹)a b |
a Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b Center for Macroscopic Quantum Phenomena, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China |
|
|
Abstract Due to the low sensitivity to the blackbody radiation, neutral mercury is a good candidate for the most accurate optical lattice clock. Here we report the observation of cold mercury atoms in a magneto–optical trap (MOT). Because of the high vapor pressure at room temperature, the mercury source and the cold pump were cooled down to -40 ℃ and -70 ℃, respectively, to keep the science chamber in ultra-high vacuum of 6×10-9 Pa. Limited by the power of the UV cooling laser, the one beam folded MOT configuration was adopted, and 1.5×105 Hg-202 atoms were observed in the fluorescence detection.
|
Received: 26 October 2012
Revised: 04 December 2012
Accepted manuscript online:
|
PACS:
|
37.10.Gh
|
(Atom traps and guides)
|
|
37.10.De
|
(Atom cooling methods)
|
|
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
Fund: Project supported by the Research Project of Shanghai Science and Technology Commission, China (Grant No. 09DJ1400700), the National Natural Science Foundation of China (Grant Nos. 10974211 and 11104292), and the National Basic Research Program of China (Grant No. 2011CB921504). |
Corresponding Authors:
Xu Zhen, Wang Yu-Zhu
E-mail: xuzhen@siom.ac.cn; yzwang@mail.shcnc.ac.cn
|
Cite this article:
Liu Hong-Li (刘洪力), Yin Shi-Qi (尹士奇), Liu Kang-Kang (刘亢亢), Qian Jun (钱军), Xu Zhen (徐震), Hong Tao (洪涛), Wang Yu-Zhu (王育竹) Magneto–optical trap for neutral mercury atoms 2013 Chin. Phys. B 22 043701
|
[1] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[2] |
Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
|
[3] |
Lemke N D, Ludlow A D, Barber Z W, Fortier T M, Diddams S A, Jiang Y, Jefferts S R, Heavner T P, Parker T E and Oates C W 2009 Phys. Rev. Lett. 103 063001
|
[4] |
Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
|
[5] |
Le Targat R, Baillard X, Fouche M, Brusch A, Tcherbakoff O, Rovera G D and Lemonde P 2006 Phys. Rev. Lett. 97 130801
|
[6] |
Takamoto M, Takano T and Katori H 2011 Nat. Photon. 5 288
|
[7] |
Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
|
[8] |
Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
|
[9] |
Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502
|
[10] |
Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Pal'chikov V G, Takamoto M and Katori H 2008 Phys. Rev. Lett. 100 053001
|
[11] |
Petersen M, Chicireanu R, Dawkins S T, Magalhaes D V, Mandache C, Le Coq Y, Clairon A and Bize S 2008 Phys. Rev. Lett. 101 183004
|
[12] |
Villwock P, Siol S and Walther T 2011 Eur. Phys. J. D 65 251
|
[13] |
Angstmann E J, Dzuba V A and Flambaum V V 2004 Phys. Rev. A 70 014102
|
[14] |
Romalis M V, Griffith W C, Jacobs J P and Fortson E N 2001 Phys. Rev. Lett. 86 2505
|
[15] |
Yi L, Mejri S, McFerran J J, Le Coq Y and Bize S 2011 Phys. Rev. Lett. 106 073005
|
[16] |
McFerran J J, Yi L, Mejri S, Di Manno S, Zhang W, Guena J, Le Coq Y and Bize S 2012 Phys. Rev. Lett. 108 183004
|
[17] |
Yin S, Liu H, Qian J, Hong T, Xu Z and Wang Y 2012 Opt. Commun. 285 5169
|
[18] |
Zhao P, Xiong Z, Liang J, He L and Lü B 2008 Chin. Phys. Lett. 25 3631
|
[19] |
Zhao P, Xiong Z, Long Y, He L and Lü B 2009 Chin. Phys. Lett. 26 083702
|
[20] |
Wang S, Wang Q, Lin Y, Wang M, Lin B, Zang E, Li T and Fang Z 2009 Chin. Phys. Lett. 26 093202
|
[21] |
Wang Q, Lin B, Zhao Y, Li Y, Wang S, Wang M, Zang E, Li T and Fang Z 2011 Chin. Phys. Lett. 28 033201
|
[22] |
Lide D R 2009 CRC Handbook of Chemistry and Physics 90th edn. (Boca Raton: CRC Press)
|
[23] |
McFerran J J, Yi L, Mejri S and Bize S 2010 Opt. Lett. 35 3078
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|