Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087201    DOI: 10.1088/1674-1056/22/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification

Zhang Jie (张洁)a b, Yuan Chao (袁超)c, Wang Jun-Qiao (王俊俏)a, Liang Er-Jun (梁二军)a, Chao Ming-Ju (晁明举)a
a School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China;
b Department of Physics and Electronic Science, Zhengzhou Normal University, Zhengzhou 450044, China;
c College of Science, Henan Agricultural University, Zhengzhou 450002, China
Abstract  Materials La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ with x=0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general dependence of the Co content and the total conductivities of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S·cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxygen partial pressure are also measured. It is shown that the samples with the Co content values ≤ 8.5 mol% each exhibit basically ionic conduction while those for Co content values ≥ 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm=1.01325×105 Pa) to 0.98 atm. The improved ionic conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.
Keywords:  doped lanthanum gallate      laser rapid solidification      oxygen ion conductivity      activation energy  
Received:  01 November 2012      Revised:  15 January 2013      Accepted manuscript online: 
PACS:  72.60.+g (Mixed conductivity and conductivity transitions)  
  61.72.U- (Doping and impurity implantation)  
  66.90.+r (Other topics in nonelectronic transport properties of condensed matter)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974183), the Fund for Science and Technology Innovation Team of Zhengzhou City, China (Grant No. 2011-3), and the Postdoctoral Research Sponsorship in Henan Province, China (Grant No. 2011002).
Corresponding Authors:  Liang Er-Jun     E-mail:  ejliang@zzu.edu.cn

Cite this article: 

Zhang Jie (张洁), Yuan Chao (袁超), Wang Jun-Qiao (王俊俏), Liang Er-Jun (梁二军), Chao Ming-Ju (晁明举) Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification 2013 Chin. Phys. B 22 087201

[1] Fergus J W 2006 J. Power Sources 162 30
[2] Haile S M 2003 Acta Mater. 51 5981
[3] Xiang J, Guo Y T, Chu Y Q and Zhou G Z 2011 Acta Phys. Sin. 60 027203 (in Chinese)
[4] Shen X Q, Wei T, Peng T G, Zhang Y, Lou K X and Xiang J 2009 Acta Phys. Sin. 58 3402 (in Chinese)
[5] Wang X H and Xiang J 2008 Acta Phys. Sin. 57 4417 (in Chinese)
[6] Zhang J, Liang E J, Sun Q and Jia Y 2012 Chin. Phys. B 21 047201
[7] Ishihara T, Matsuda H and Takita Y 1994 J. Am. Chem. Soc. 116 3801
[8] Huang K, Tichy R S and Goodenough J B 1998 J. Am. Ceram. Soc. 81 2565
[9] Ishihara T, Akbay T, Furutani H and Takita Y 1998 Solid State Ionics 113-115 585
[10] Ishihara T, Furutani H, Honda M, Yamada T, Shibayama T, Akbay T, Sakai N, Yokokawa H and Takita Y 1999 Chem. Mater. 11 2081
[11] Trofimenko N and Ullmann H 1999 Solid State Ionics 118 215
[12] Trofimenko N and Ullmann H 1999 Solid State Ionics 124 263
[13] Stevenson J W, Hasinska K, Canfield N L and Armstrong T R 2000 J. Electrochem. Soc. 147 3213
[14] Kharton V V, Viskup A P, Yaremchenko A A, Baker R T, Gharbage B, Mather G C, Figueiredo F M, Naumovich E N and Marques F M B 2000 Solid State Ionics 132 119
[15] Yaremchenko A A, Shaula A L, Logvinovich D I, Kharton V V, Kovalevsky A V, Naumovich E N, Frade J R and Marques F M B 2003 Mater. Chem. Phys. 82 684
[16] Ishihara T, Shibayama T, Nishiguchi H and Takita Y 2001 J. Mater. Sci. 36 1125
[17] Enoki M, Yan J, Matsumoto H and Ishihara T 2006 Solid State Ionics 177 2053
[18] Ishihara T, Tabuchi J, Ishikawa S, Yan J, Enoki M and Matsumoto H 2006 Solid State Ionics 177 1949
[19] Gomes E, Marques F M B and Figueiredo F M 2008 Solid State Ionics 179 1325
[20] Polini R, Falsetti A and Traversa E 2005 J. Eur. Ceram. Soc. 25 2593
[21] Polini R, Falsetti A, Traversa E, Schäf O and Knauth P 2007 J. Eur. Ceram. Soc. 27 4291
[22] Wang S Z, Wu L L and Liang Y 2007 J. Power Sources 166 22
[23] Ishihara T, Ishikawa S, Yu C Y, Akbay T, Hosoi K, Nishiguchi H and Takita Y 2003 Phys. Chem. Chem. Phys. 5 2257
[24] Xue J F, Shen Y, Zhou Q J, He T M and Han Y H 2010 Int. J. Hydrogen Energy 35 294
[25] Zhang J, Liang E J and Zhang X H 2010 J. Power Sources 195 6758
[26] Liang E J, Wu T A, Yuan B, Chao M J and Zhang W F 2007 J. Phys D: Appl. Phys. 40 3219
[27] Liang E J, Wang J P, Xu E M, Du Z Y and Chao M J 2008 J. Raman Spectrosc. 39 887
[28] Liang E J 2010 Rec. Pat. Mater. Sci. 3 106
[29] Macdonald J R 1987 Impedance Spectroscopy (New York: Wiley) pp. 105-106
[30] Herle J V, McEvoy A J and Thampi K R 1994 J. Mater. Sci. 29 3691
[31] Kosacki I, Anderson H U, Mizutani Y and Ukai K 2002 Solid State Ionics 152-153 431
[32] Khorkounov B A, Näfe H and Aldinger F 2006 J. Solid State Electrochem. 10 479
[1] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[2] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[3] Physical implications of activation energy derived from temperature dependent photoluminescence of InGaN-based materials
Jing Yang(杨静), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Xiang Li(李翔), Wei Liu(刘炜), Feng Liang(梁锋), Li-Qun Zhang(张立群), Hui Yang(杨 辉), Wen-Jie Wang(王文杰), Mo Li(李沫). Chin. Phys. B, 2017, 26(7): 077101.
[4] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[5] Electron trapping properties at HfO2/SiO2 interface, studied by Kelvin probe force microscopy and theoretical analysis
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(8): 087701.
[6] Magnetic transition behavior of perovskite manganites Nd0.5Sr0.3Ca0.2MnO3 polycrystalline
Ru Xing(邢茹), Su-Lei Wan(万素磊), Wen-Qing Wang(王文清), Lin Zheng(郑琳), Xiang Jin(金香), Min Zhou(周敏), Yi Lu(鲁毅), Jian-Jun Zhao(赵建军). Chin. Phys. B, 2016, 25(4): 047601.
[7] Field-dependent resistive transitions in Yba2Cu3O7-δ thin films: Influence of the pseudogap on vortex dynamics
S H Naqib, R S Islam. Chin. Phys. B, 2015, 24(1): 017402.
[8] Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation
Liu Zheng-Guang (刘争光), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(11): 110208.
[9] In situ electrical resistance and activation energy of solid C60 under high pressure
Yang Jie (杨洁), Liu Cai-Long (刘才龙), Gao Chun-Xiao (高春晓). Chin. Phys. B, 2013, 22(9): 096202.
[10] Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p–Si and Al/Bi4Ti3O12/p–Si structures by using the admittance spectroscopy method
Mert Yíldírím, Perihan Durmuş, Şemsettin Altíndal. Chin. Phys. B, 2013, 22(10): 108502.
[11] The electrical properties of sulfur-implanted cubic boron nitride thin films
Deng Jin-Xiang(邓金祥), Qin Yang(秦扬), Kong Le(孔乐), Yang Xue-Liang(杨学良), Li Ting(李廷), Zhao Wei-Ping(赵卫平), and Yang Ping(杨萍) . Chin. Phys. B, 2012, 21(4): 047202.
[12] First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model
Wu Qiong (吴琼), Li Shu-Suo (李树索), Ma Yue (马岳), Gong Sheng-Kai (宫声凯). Chin. Phys. B, 2012, 21(10): 109102.
[13] Diffusion activation energy versus the favourable energy in two-order-parameter model:A molecular dynamics study of liquid Al
Li Yi-De(李宜德), Hao Qing-Hai(郝清海), Cao Qi-Long(曹启龙), and Liu Chang-Song(刘长松). Chin. Phys. B, 2010, 19(8): 086104.
[14] Charge-sensitive deep level transient spectroscopy of helium-ion-irradiated silicon, as-irradiated and after thermal annealing
Li Bing-Sheng(李炳生), Zhang Chong-Hong(张崇宏), Yang Yi-Tao(杨义涛), Zhou Li-Hong(周丽宏), and Zhang Hong-Hua(张洪华). Chin. Phys. B, 2009, 18(1): 246-250.
[15] Electrical and optical characteristics of vanadium in 4H-SiC
Wang Chao(王超), Zhang Yi-Men(张义门), and Zhang Yu-Ming(张玉明). Chin. Phys. B, 2007, 16(5): 1417-1421.
No Suggested Reading articles found!