Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 083101    DOI: 10.1088/1674-1056/22/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Molecular dynamics simulation of self-diffusion coefficients for liquid metals

Ju Yuan-Yuan (巨圆圆)a, Zhang Qing-Ming (张庆明)a, Gong Zi-Zheng (龚自正)b, Ji Guang-Fu (姬广富)c
a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
b National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China;
c Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics methods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the literature vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes-Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature.
Keywords:  molecular dynamics      self-diffusion coefficients      shear-viscosity      liquid metals  
Received:  10 December 2012      Revised:  29 March 2013      Accepted manuscript online: 
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  61.20.Ja (Computer simulation of liquid structure)  
  66.30.Fq (Self-diffusion in metals, semimetals, and alloys)  
  87.15.Vv (Diffusion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11032003 and 11221202) and the National Basic Research Program of China (Grant No. 2010CB731600).
Corresponding Authors:  Zhang Qing-Ming     E-mail:  qmzhang@bit.edu.cn

Cite this article: 

Ju Yuan-Yuan (巨圆圆), Zhang Qing-Ming (张庆明), Gong Zi-Zheng (龚自正), Ji Guang-Fu (姬广富) Molecular dynamics simulation of self-diffusion coefficients for liquid metals 2013 Chin. Phys. B 22 083101

[1] Mei J and Davenport J W 1990 Phys. Rev. B 42 9682
[2] Bogicevic A, Hansen L B and Lundqvist B I 1997 Phys. Rev. E 55 5535
[3] Chauhan A S, Ravi R and Chhabra R P 2000 Chem. Phys. 252 227
[4] Mantina M, Wang Y, Arroyave R, Chen L Q and Liu Z K 2008 Phys. Rev. Lett. 100 215901
[5] Akhter J I, Ahmed E and Ahmad M 2005 Mater. Chem. Phys. 93 504
[6] Li Y D, Hao Q H, Cao Q L and Liu C S 2010 Chin. Phys. B 19 086104
[7] Wang H F, Chu W G, Guo Y J and Jin H 2010 Chin. Phys. B 19 076501
[8] Zhu R Z and Yan H 2011 Chin. Phys. B 20 016801
[9] Mehrer H 2007 Diffusion in Solids (Heidelberg: Springer)
[10] Iida T and Guthrie R I L 1988 The Physical Properties of Liquid Metals (Oxford: Clarendon)
[11] Yu Y X, Han M H and Gao G H 2001 Phys. Chem. Chem. Phys. 3 437
[12] Yu Y X and Gao G H 2001 Fluid Phase Equilib. 179 165
[13] Chen Z H, Yu Z Y, Lu P F and Liu Y M 2009 Chin. Phys. B 18 4591
[14] Yan H, Zhu R Z and Wei J A 2012 Chin. Phys. B 21 083102
[15] Fujimoto S and Yu Y X 2010 Chin. Phys. B 19 088701
[16] Khasare S B 2012 Chin. Phys. B 21 045103
[17] Asad A and Wu J T 2011 Chin. Phys. B 20 106601
[18] Mei J, Davenport J W and Fernando G W 1991 Phys. Rev. B 43 4653
[19] Li H, Bian X F and Wang W M 2000 J. At. Mol. Phys. 17 123 (in Chinese)
[20] Becker C A and Kramer M J 2010 Modelling Simul. Mater. Sci. Eng. 18 074001
[21] Liu X Y, Ohotnicky P P, Adams J B, Lane Rohrer C and Hyland R W Jr 1997 Surf. Sci. 373 357
[22] Mendelev M I, Kramer M J, Becker C A and Asta M 2008 Phil. Mag. 88 1723
[23] Kargl F, Weis H, Unruh T and Meyer A 2012 J. Phys.: Conf. Ser. 340 012077
[24] Forsblom M and Grimvall G 2005 Phys. Rev. B 72 132204
[25] Ercolessi F and Adams J B 1994 Europhys. Lett. 26 583
[26] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 224106
[27] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L and Kelly T F 2001 Acta Mater. 49 4005
[28] Meyer A 2010 Phys. Rev. B 81 012102
[29] Assael M J, Konstantinos K, Banish R M, Brillo J, Egry I, Brooks R, Quested P N, Mills K C, Nagashima A, Sato Y and Wakeham W A 2006 J. Phys. Chem. Ref. Data 35 285
[30] Arsent'ev P P and Polyakova K I 1977b Izv. Akad. Nauk. SSSR Met. 2 65
[31] Mills K C 2002 Recommended Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead Publishing Limited)
[32] Cavalier M G in 1959 "The Physical Chemistry of Metallic Solutions and Intermetallic Compounds" Proceedings of a Symposium held at the National Physical Laboratory on the 4th, 5th, and 6th of June 1958 (London: H. M. Stationery Off., 1959), Vol. 2, paper 4D
[33] Barfield R N and Kitchener J A 1955 J. Iron Steel Inst. 180 324
[34] Assael M J, Kalyva A E, Antoniadis K D, Banish R M, Egry I, Wu J T, Kaschnitz E and Wakeham W A 2010 J. Phys. Chem. Ref. Data 39 033105
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!