Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080302    DOI: 10.1088/1674-1056/22/8/080302
GENERAL Prev   Next  

Relativistic symmetries in the Hulthén scalar–vector–tensor interactions

Majid Hamzavia, Ali Akbar Rajabib
a Department of Science and Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran;
b Physics Department, Shahrood University of Technology, Shahrood, Iran
Abstract  In the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation for scalar-vector-tensor Hulthén potentials are obtained with any arbitrary spin-orbit coupling number κ using the Pekeris approximation. The Hulthén tensor interaction is studied instead of the commonly used Coulomb or linear terms. The generalized parametric Nikiforov-Uvarov (NU) method is used to obtain energy eigenvalues and corresponding wave functions in their closed forms. It is shown that tensor interaction removes degeneracy between spin and p-spin doublets. Some numerical results are also given.
Keywords:  Dirac equation      Hulthén scalar-vector-tensor potential      spin and p-spin symmetry      NU method  
Received:  09 December 2012      Revised:  28 January 2013      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
Corresponding Authors:  Majid Hamzavi     E-mail:  majid.hamzavi@gmail.com

Cite this article: 

Majid Hamzavi, Ali Akbar Rajabi Relativistic symmetries in the Hulthén scalar–vector–tensor interactions 2013 Chin. Phys. B 22 080302

[1] Haxel O, Jensen J H D and Suess H E 1949 Phys. Rev. 75 1766
[2] Goepper M 1949 Phys. Rev. 75 1969
[3] Zhang W, Meng J, Zhang S Q, Geng L S and Toki H 2005 Nucl. Phys. A 753 106
[4] Meng J, Toki H, Zhou S G, Zheng S Q, Long W H and Geng L S 2006 Prog. Part. Nucl. Phys. 57 470
[5] Ginocchio J N 2005 Phys. Rep. 414 165
[6] Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[7] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[8] Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[9] Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[10] Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 034303
[11] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[12] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[13] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[14] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 911
[15] Berkdemir C 2006 Nucl. Phys. A 770 32
[16] Wei G F and Dong S H 2009 Europhys. Lett. 87 40004
[17] Wei G F and Dong S H 2010 Phys. Lett. B 686 288
[18] Wei G F and Dong S H 2010 Eur. Phys. J. A 46 207
[19] Liang H, Shen S, Zhao P and Meng J 2012 arXiv: 1207.6211
[20] Moshinsky M and Szczepanika A 1989 J. Phys. A: Math. Gen. 22 L817
[21] Kukulin V I, Loyla G and Moshinsky M 1991 Phys. Lett. A 158 19
[22] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319
[23] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[24] Akcay H 2009 Phys. Lett. A 373 616
[25] Akcay H 2007 J. Phys. A: Math. Theor. 40 6427
[26] Aydoğdu O and Sever R 2010 Few-Body Syst. 47 193
[27] Aydoğdu O and Sever R 2010 Eur. Phys. J. A 43 73
[28] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Phys. Lett. A 374 4303
[29] Hamzavi M, Rajabi A A and Hassanabadi H 2011 Int. J. Mod. Phys. A 26 1363
[30] Myhrman U 1983 J. Phys. A: Math. Gen. 16 263
[31] Roy B and Roychoudhury R 1990 J. Phys. A: Math. Gen. 23 5095
[32] Filho E D and Ricotta R M 1995 Mod. Phys. Lett. A 10 1613
[33] Qian S W, Huang B W and Gu Z Y 2002 New J. Phys. 4 13
[34] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 36 11807
[35] Soylu A, Bayrak O and Boztosun I 2007 J. Math. Phys. 48 082302
[36] Ikhdair S M, Berkdemir C and Sever R 2011 Appl. Math. Comput. 217 9019
[37] Biedenharn L C 1962 Phys. Rev. 126 845
[38] Haouat S and Chetouani L 2008 Phys. Scr. 77 025005
[39] Ginocchio J N 1999 Nucl. Phys. A 654 663
[40] Ginocchio J N 1999 Phys. Rep. 315 231
[41] Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
[42] Meng J, Sugawara-Tanabe K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
[43] Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501
[44] He X T, Zhou S G, Meng J, Zhao E G and Scheid W 2006 Eur. Phys. J. A 28 265
[45] Song C Y, Yao J M and Meng J 2009 Chin. Phys. Lett. 26 122102
[46] Song C Y and Yao J M 2010 Chin. Phys. C 34 1425
[47] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhausr)
[48] Ikhdair S M 2009 Int. J. Mod. Phys. C 20 1563
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Exact solution of the generalized Kemmer oscillator
Zi-Long Zhao(赵子龙), Chao-Yun Long(龙超云), Zheng-Wen Long(隆正文), Ting Xu(徐渟). Chin. Phys. B, 2017, 26(8): 080301.
[3] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[4] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[5] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[6] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[7] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[8] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[9] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[10] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[11] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[12] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[13] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[14] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
No Suggested Reading articles found!