|
|
Relativistic symmetries in the Hulthén scalar–vector–tensor interactions |
Majid Hamzavia, Ali Akbar Rajabib |
a Department of Science and Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran; b Physics Department, Shahrood University of Technology, Shahrood, Iran |
|
|
Abstract In the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation for scalar-vector-tensor Hulthén potentials are obtained with any arbitrary spin-orbit coupling number κ using the Pekeris approximation. The Hulthén tensor interaction is studied instead of the commonly used Coulomb or linear terms. The generalized parametric Nikiforov-Uvarov (NU) method is used to obtain energy eigenvalues and corresponding wave functions in their closed forms. It is shown that tensor interaction removes degeneracy between spin and p-spin doublets. Some numerical results are also given.
|
Received: 09 December 2012
Revised: 28 January 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
03.65.Fd
|
(Algebraic methods)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
02.30.Gp
|
(Special functions)
|
|
Corresponding Authors:
Majid Hamzavi
E-mail: majid.hamzavi@gmail.com
|
Cite this article:
Majid Hamzavi, Ali Akbar Rajabi Relativistic symmetries in the Hulthén scalar–vector–tensor interactions 2013 Chin. Phys. B 22 080302
|
[1] |
Haxel O, Jensen J H D and Suess H E 1949 Phys. Rev. 75 1766
|
[2] |
Goepper M 1949 Phys. Rev. 75 1969
|
[3] |
Zhang W, Meng J, Zhang S Q, Geng L S and Toki H 2005 Nucl. Phys. A 753 106
|
[4] |
Meng J, Toki H, Zhou S G, Zheng S Q, Long W H and Geng L S 2006 Prog. Part. Nucl. Phys. 57 470
|
[5] |
Ginocchio J N 2005 Phys. Rep. 414 165
|
[6] |
Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
|
[7] |
Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
|
[8] |
Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
|
[9] |
Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
|
[10] |
Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 034303
|
[11] |
Ginocchio J N 1997 Phys. Rev. Lett. 78 436
|
[12] |
Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
|
[13] |
Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
|
[14] |
Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 911
|
[15] |
Berkdemir C 2006 Nucl. Phys. A 770 32
|
[16] |
Wei G F and Dong S H 2009 Europhys. Lett. 87 40004
|
[17] |
Wei G F and Dong S H 2010 Phys. Lett. B 686 288
|
[18] |
Wei G F and Dong S H 2010 Eur. Phys. J. A 46 207
|
[19] |
Liang H, Shen S, Zhao P and Meng J 2012 arXiv: 1207.6211
|
[20] |
Moshinsky M and Szczepanika A 1989 J. Phys. A: Math. Gen. 22 L817
|
[21] |
Kukulin V I, Loyla G and Moshinsky M 1991 Phys. Lett. A 158 19
|
[22] |
Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319
|
[23] |
Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
|
[24] |
Akcay H 2009 Phys. Lett. A 373 616
|
[25] |
Akcay H 2007 J. Phys. A: Math. Theor. 40 6427
|
[26] |
Aydoğdu O and Sever R 2010 Few-Body Syst. 47 193
|
[27] |
Aydoğdu O and Sever R 2010 Eur. Phys. J. A 43 73
|
[28] |
Hamzavi M, Rajabi A A and Hassanabadi H 2010 Phys. Lett. A 374 4303
|
[29] |
Hamzavi M, Rajabi A A and Hassanabadi H 2011 Int. J. Mod. Phys. A 26 1363
|
[30] |
Myhrman U 1983 J. Phys. A: Math. Gen. 16 263
|
[31] |
Roy B and Roychoudhury R 1990 J. Phys. A: Math. Gen. 23 5095
|
[32] |
Filho E D and Ricotta R M 1995 Mod. Phys. Lett. A 10 1613
|
[33] |
Qian S W, Huang B W and Gu Z Y 2002 New J. Phys. 4 13
|
[34] |
Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 36 11807
|
[35] |
Soylu A, Bayrak O and Boztosun I 2007 J. Math. Phys. 48 082302
|
[36] |
Ikhdair S M, Berkdemir C and Sever R 2011 Appl. Math. Comput. 217 9019
|
[37] |
Biedenharn L C 1962 Phys. Rev. 126 845
|
[38] |
Haouat S and Chetouani L 2008 Phys. Scr. 77 025005
|
[39] |
Ginocchio J N 1999 Nucl. Phys. A 654 663
|
[40] |
Ginocchio J N 1999 Phys. Rep. 315 231
|
[41] |
Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
|
[42] |
Meng J, Sugawara-Tanabe K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
|
[43] |
Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501
|
[44] |
He X T, Zhou S G, Meng J, Zhao E G and Scheid W 2006 Eur. Phys. J. A 28 265
|
[45] |
Song C Y, Yao J M and Meng J 2009 Chin. Phys. Lett. 26 122102
|
[46] |
Song C Y and Yao J M 2010 Chin. Phys. C 34 1425
|
[47] |
Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhausr)
|
[48] |
Ikhdair S M 2009 Int. J. Mod. Phys. C 20 1563
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|