Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080301    DOI: 10.1088/1674-1056/22/8/080301
GENERAL Prev   Next  

Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity

Fan Hong-Yi (范洪义)a b, He Rui (何锐)b, Da Cheng (笪诚)b, Liang Zu-Feng (梁祖峰)c
a Department of Physics, Ningbo University, Ningbo 315211, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
c Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
Abstract  We study the optical field's quadrature excitation state Xm|0>, where X=(a+a)√2 is the quadrature operator. We find it is ascribed to the Hermite-polynomial excitation state. For the first time, we determine this state's normalization constant which turns out to be a Laguerre polynomial. This is due to the integration method within the ordered product of operators (IWOP). The normalization for the two-mode quadrature excitation state is also completed by virtue of the entangled state representation.
Keywords:  quadrature excitation      Hermite-polynomial excitation state      operator identities about Laguerre polynomials      IWOP method      entangled state representation  
Received:  18 February 2013      Revised:  11 March 2013      Accepted manuscript online: 
PACS:  03.65.-a  
  02.30.Gp (Special functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11275123).
Corresponding Authors:  Fan Hong-Yi, He Rui     E-mail:  fanhongyi@nbu.edu.cn; heruim@mail.ustc.edu.cn

Cite this article: 

Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰) Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity 2013 Chin. Phys. B 22 080301

[1] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[2] Hu L Y and Fan H Y 2009 Phys. Scr. 79 035004
[3] Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
[4] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[5] Lee S Y and Nha H 2010 Phys. Rev. A 82 053812
[6] Wang S, Xu X X, Yuan H C, Hu L Y and Fan H Y 2011 J. Opt. Soc. Am. B 28 2149
[7] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[8] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[9] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products (New York: Academic Press)
[10] Fan H Y and Jiang N Q 2010 Phys. Scr. 82 055403
[11] Fan H Y, Ren G, Hu L Y and Jiang N Q 2010 Chin. Phys. B 19 114206
[12] Fan H Y, Yuan H C, Xu X X and Jiang N Q 2011 Phys. Scr. 83 015403
[13] Liu T K, Shan C J, Liu J B and Fan H Y 2010 Chin. Phys. B 19 090307
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] New useful special function in quantum optics theory
Feng Chen(陈锋), Hong-Yi Fan(范洪义). Chin. Phys. B, 2016, 25(8): 080303.
[4] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[5] A new kind of special function and its application
Fan Hong-Yi (范洪义), Wan Zhi-Long (万志龙), Wu Ze (吴泽), Zhang Peng-Fei (张鹏飞). Chin. Phys. B, 2015, 24(10): 100302.
[6] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[7] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[8] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2014, 23(8): 080301.
[9] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[10] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[11] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[12] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[13] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[14] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[15] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
No Suggested Reading articles found!