Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080507    DOI: 10.1088/1674-1056/22/8/080507
GENERAL Prev   Next  

Adaptive lag synchronization of uncertain dynamical systems with time delays via simple transmission lag feedback

Gu Wei-Dong (顾卫东), Sun Zhi-Yong (孙志勇), Wu Xiao-Ming (吴晓明), Yu Chang-Bin (于长斌)
Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014, China
Abstract  In this paper we present an adaptive scheme to achieve lag synchronization for uncertain dynamical systems with time delays and unknown parameters. In contrast to the nonlinear feedback scheme reported in the previous literature, the proposed controller is a linear one which only involves simple feedback information from the drive system with signal propagation lags. Besides, the unknown parameters can also be identified via the proposed updating laws in spite of the existence of model delays and transmission lags, as long as the linear independence condition between the related function elements is satisfied. Two examples, i.e., the Mackey-Glass model with single delay and the Lorenz system with multiple delays, are employed to show the effectiveness of this approach. Some robustness issues are also discussed, which shows that the proposed scheme is quite robust in switching and noisy environment.
Keywords:  adaptive feedback      time delay      lag synchronization      parameter identification      noise perturbation  
Received:  13 November 2012      Revised:  16 January 2013      Accepted manuscript online: 
PACS:  05.45.Tp (Time series analysis)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Science and Technology Major Project, China (Grant No. 2011ZX03005-002), the Shandong Academy of Science Development Fund for Science and Technology, China, and the Pilot Project for Science and Technology in Shandong Academy of Sciences, China.
Corresponding Authors:  Sun Zhi-Yong     E-mail:  kfmuzik@126.com, sun.zhiyong.cn@gmail.com, sunzhy@sdas.org

Cite this article: 

Gu Wei-Dong (顾卫东), Sun Zhi-Yong (孙志勇), Wu Xiao-Ming (吴晓明), Yu Chang-Bin (于长斌) Adaptive lag synchronization of uncertain dynamical systems with time delays via simple transmission lag feedback 2013 Chin. Phys. B 22 080507

[1] Pikovsky A, Rosenblum M and Kurths J 2003 Synchronization: A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press)
[2] Kapitaniak M, Czolczynski K, Perlikowski P, Stefanski A and Kapitaniak T 2012 Phys. Rep. 517 1
[3] Feng J, Yam P, Austin F and Xu C 2011 Zeitschrift fur Naturforschung A 66 6
[4] Lu J, Kurths J, Cao J, Mahdavi N and Huang C 2012 IEEE Trans. Neural Netw. Learning System 23 285
[5] Boccaletti S, Kurths J, Osipov G, Valladares D and Zhou C 2002 Phys. Rep. 366 1
[6] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[7] Wang D, Zhong Y and Chen S 2008 Commun. Nonlinear Sci. Numer. Simul. 13 637
[8] Feng J, Dai A, Xu C and Wang J 2011 Comput. Math. Appl. 61 2123
[9] Lü L and Li Y 2009 Acta Phys. Sin. 58 131 (in Chinese)
[10] Liu H, Jun Y H and Wei X 2012 Acta Phys. Sin. 61 180503 (in Chinese)
[11] Wang Q Y, Lu Q S and Duan Z S 2010 Int. J. Non-Linear Mech. 45 640
[12] Sun Z and Yang X 2011 Chaos 21 033114
[13] Chai Y and Chen L Q 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3390
[14] Tang M 2012 Chin. Phys. B 21 020509
[15] Huang Y, Zhang H and Wang Z 2012 Chin. Phys. B 21 070701
[16] Wang S and Yao H 2012 Chin. Phys. B 21 050508
[17] Shahverdiev E, Sivaprakasam S and Shore K 2002 Phys. Lett. A 292 320
[18] Li C, Liao X and Wong K 2004 Physica D 194 187
[19] Xu Y, Zhou W, Fang J and Sun W 2010 Phys. Lett. A 374 3441
[20] Liu H, Lu J and Zhang Q 2010 Nonlinear Dyn. 62 427
[21] Zhang R X and Yang S P 2011 Chin. Phys. B 20 090512
[22] Yu W and Cao J 2007 Physica A 375 467
[23] Pourdehi S, Karimaghaee P and Karimipour D 2011 Phys. Lett. A 375 1769
[24] Liu H, Lu J A, Lü J and Hill D J 2009 Automatica 45 1799
[25] Che Y, Li R, Han C, Wang J, Cui S, Deng B and Wei X 2012 Eur. Phys. J. B 85 1
[26] Sun Z Y, Si G Q, Min F H and Zhang Y B 2012 Nonlinear Dyn. 68 471
[27] Boyd S, El Ghaoul L, Feron E and Balakrishnan V 1987 Linear Matrix Inequalities in System and Control Theory (Philadephia: SIAM)
[28] Ioannou P A and Sun J 1996 Robust Adaptive Control (Upper Saddle River, NJ: Prentice Hall)
[29] Sun F, Peng H, Luo Q, Li L and Yang Y 2009 Chaos 19 23109
[30] Zhao J C, Li Q, Lu J A and Jiang Z P 2010 Chaos 20 023119
[31] Huang D 2005 Phys. Rev. E 71 037203
[32] Huang D 2006 Phys. Rev. E 73 066204
[33] Mackey M C and Glass L 1977 Science 197 287
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[9] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[10] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[11] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[12] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[13] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[14] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[15] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
No Suggested Reading articles found!