CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Density-functional theory study of the effect of pressure on the elastic properties of CaB6 |
Han Han (韩晗) |
Surface Physics Laboratory (National Key Laboratory), Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China |
|
|
Abstract Under a high pressure, long believed single-phase material CaB6 is latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young's moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.
|
Received: 15 January 2013
Revised: 27 February 2013
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
62.20.D-
|
(Elasticity)
|
|
71.20.Ps
|
(Other inorganic compounds)
|
|
Corresponding Authors:
Han Han
E-mail: fdu.hhan@gmail.com
|
Cite this article:
Han Han (韩晗) Density-functional theory study of the effect of pressure on the elastic properties of CaB6 2013 Chin. Phys. B 22 077101
|
[1] |
McMahon M I and Nelmes R J 2006 Chem. Soc. Rev. 35 943
|
[2] |
Pickard C J and Needs R J 2010 Nature Mater. 9 624
|
[3] |
Kolmogorov A N and Curtarolo S 2006 Phys. Rev. B 74 224507
|
[4] |
Feng J, Hennig R G, Ashcroft N W and Hoffmann R 2008 Nature 451 445
|
[5] |
Li X X, Tao X M, Chen H M, Ouyang Y F and Du Y 2013 Chin. Phys. B 22 026201
|
[6] |
Yu B H and Chen D 2012 Chin. Phys. B 21 060508
|
[7] |
Liang H N, Ma C L, Du F, Cui Q L and Zou G T 2013 Chin. Phys. B 22 016103
|
[8] |
Ji X H, Zhang Q Y, Xu J Q and Zhao Y M 2011 Prog. Solid State Chem. 39 51
|
[9] |
Xu Y, Zhang L, Cui T, Li Y, Xie Y, Yu W, Ma Y and Zou G 2007 Phys. Rev. B 76 214103
|
[10] |
Young D P, Hall D, Torelli M E, Fisk Z, Sarrao J L, Thompson J D, Ott H R, Oseroff S B, Goodrich R G and Zysler R 1999 Nature 397 412
|
[11] |
Kolmogorov A N, Shah S, Margine E R, Kleppe A K and Jephcoat A P 2012 Phys. Rev. Lett. 109 075501
|
[12] |
Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y and Allan D C 2002 Comput. Mater Sci. 25 478
|
[13] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[14] |
Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
|
[15] |
Fuchs M and Scheffler M 1999 Comput. Phys. Commun. 119 67
|
[16] |
Gajdos M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
|
[17] |
Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
|
[18] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[19] |
Zhong J L, Smith M E, Sowrey F E and Newport R J 2004 Phys. Rev. B 69 224107
|
[20] |
Bader R F 1994 Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press)
|
[21] |
Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
|
[22] |
Bork N, Bonanos N, Rossmeisl J and Vegge T 2011 J. Appl. Phys. 109 033702
|
[23] |
Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502
|
[24] |
Kimura S, Nanba T, Tomikawa M, Kunii S and Kasuya T 1992 Phys. Rev. B 46 12196
|
[25] |
Qian S L and Qiao J 2003 The Journal of Physical Chemistry A 107 7869
|
[26] |
Kimura S, Nanba T, Kunii S and Kasuya T 1994 Phys. Rev. B 50 1406
|
[27] |
He X K, Zeng L B, Wu Q S, Zhang L Y, Zhu K and Liu Y L 2012 Chin. Phys. B 21 067801
|
[28] |
Born M and Huang K 1998 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press)
|
[29] |
Wang J J, Meng F Y, Ma X Q, Xu M X and Chen L Q 2010 J. Appl. Phys. 108 034107
|
[30] |
Voigt W 1928 Lehrburch der Kristallphys (Leipzig: Teubner Press)
|
[31] |
Reuss A and Angew Z 1929 Math. Mech. 9 49
|
[32] |
Hill R 1952 Proc. Phys. Soc. Lond. 65 349
|
[33] |
Ding Y C, Chen M, Gao X Y and Jiang M H 2012 Chin. Phys. B 21 067101
|
[34] |
Xu X W, Hu L, Yu X, Lu Z M, Fan Y, Li Y X and Tang C C 2011 Chin. Phys. B 20 126201
|
[35] |
Havva B O, Kemal C, Engin D and Haci O 2012 Chin. Phys. B 21 047101
|
[36] |
Hao X, Xu Y, Wu Z, Zhou D, Liu X, Cao X and Meng J 2006 Phys. Rev. B 74 224112
|
[37] |
Kanoun M B, Goumri-Said S and Reshak A H 2009 Comput. Mater. Sci. 47 491
|
[38] |
Nieto-Sanz D, Loubeyre P, Crichton W and Mezouar M 2004 Phys. Rev. B 70 214108
|
[39] |
Hu Z G, Yoshimura M, Mori Y and Sasaki T 2004 J. Cryst. Growth 260 287
|
[40] |
Pugh S F 1954 Philos. Mag. 45 823
|
[41] |
Shein I R and Ivanovskii A L 2008 J. Phys.: Condens. Matter 20 415218
|
[42] |
Mattesini M, Ahuja R and Johansson B 2003 Phys. Rev. B 68 184108
|
[43] |
Zhang R F, Veprek S and Argon A S 2007 Appl. Phys. Lett. 91 201914
|
[44] |
Frantsevich I N, Voronov F F and Bokuta S A 1982 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka)
|
[45] |
Bouhemadou A, Khenata R and Binomran S 2011 Physica B 406 2851
|
[46] |
Kim K Y, Bretz K C, Every A G and Sachse W G 1996 J. Appl. Phys. 79 1857
|
[47] |
Zhou Q, Zhang S and Lü Y 2001 Mater. Sci. Eng. B 83 239
|
[48] |
Najafi S K, Bucur V and Ebrahimic G 2005 Mater. Lett. 59 2035
|
[49] |
Pantea C, Stroe I, Ledbetter H, Betts J B, Zhao Y, Daemen L L, Cynn H and Migliori A 2009 Phys. Rev. B 80 024112
|
[50] |
Auld B A 1973 Acoustic Fields and Waves in Solids Vol.~I (New York: John Wiley & Sons Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|