Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077101    DOI: 10.1088/1674-1056/22/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Density-functional theory study of the effect of pressure on the elastic properties of CaB6

Han Han (韩晗)
Surface Physics Laboratory (National Key Laboratory), Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China
Abstract  Under a high pressure, long believed single-phase material CaB6 is latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young's moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.
Keywords:  density-functional theory      elastic properties      pressure effects      acoustic properties  
Received:  15 January 2013      Revised:  27 February 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.D- (Elasticity)  
  71.20.Ps (Other inorganic compounds)  
Corresponding Authors:  Han Han     E-mail:  fdu.hhan@gmail.com

Cite this article: 

Han Han (韩晗) Density-functional theory study of the effect of pressure on the elastic properties of CaB6 2013 Chin. Phys. B 22 077101

[1] McMahon M I and Nelmes R J 2006 Chem. Soc. Rev. 35 943
[2] Pickard C J and Needs R J 2010 Nature Mater. 9 624
[3] Kolmogorov A N and Curtarolo S 2006 Phys. Rev. B 74 224507
[4] Feng J, Hennig R G, Ashcroft N W and Hoffmann R 2008 Nature 451 445
[5] Li X X, Tao X M, Chen H M, Ouyang Y F and Du Y 2013 Chin. Phys. B 22 026201
[6] Yu B H and Chen D 2012 Chin. Phys. B 21 060508
[7] Liang H N, Ma C L, Du F, Cui Q L and Zou G T 2013 Chin. Phys. B 22 016103
[8] Ji X H, Zhang Q Y, Xu J Q and Zhao Y M 2011 Prog. Solid State Chem. 39 51
[9] Xu Y, Zhang L, Cui T, Li Y, Xie Y, Yu W, Ma Y and Zou G 2007 Phys. Rev. B 76 214103
[10] Young D P, Hall D, Torelli M E, Fisk Z, Sarrao J L, Thompson J D, Ott H R, Oseroff S B, Goodrich R G and Zysler R 1999 Nature 397 412
[11] Kolmogorov A N, Shah S, Margine E R, Kleppe A K and Jephcoat A P 2012 Phys. Rev. Lett. 109 075501
[12] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y and Allan D C 2002 Comput. Mater Sci. 25 478
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[15] Fuchs M and Scheffler M 1999 Comput. Phys. Commun. 119 67
[16] Gajdos M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[17] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[18] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[19] Zhong J L, Smith M E, Sowrey F E and Newport R J 2004 Phys. Rev. B 69 224107
[20] Bader R F 1994 Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press)
[21] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[22] Bork N, Bonanos N, Rossmeisl J and Vegge T 2011 J. Appl. Phys. 109 033702
[23] Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502
[24] Kimura S, Nanba T, Tomikawa M, Kunii S and Kasuya T 1992 Phys. Rev. B 46 12196
[25] Qian S L and Qiao J 2003 The Journal of Physical Chemistry A 107 7869
[26] Kimura S, Nanba T, Kunii S and Kasuya T 1994 Phys. Rev. B 50 1406
[27] He X K, Zeng L B, Wu Q S, Zhang L Y, Zhu K and Liu Y L 2012 Chin. Phys. B 21 067801
[28] Born M and Huang K 1998 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press)
[29] Wang J J, Meng F Y, Ma X Q, Xu M X and Chen L Q 2010 J. Appl. Phys. 108 034107
[30] Voigt W 1928 Lehrburch der Kristallphys (Leipzig: Teubner Press)
[31] Reuss A and Angew Z 1929 Math. Mech. 9 49
[32] Hill R 1952 Proc. Phys. Soc. Lond. 65 349
[33] Ding Y C, Chen M, Gao X Y and Jiang M H 2012 Chin. Phys. B 21 067101
[34] Xu X W, Hu L, Yu X, Lu Z M, Fan Y, Li Y X and Tang C C 2011 Chin. Phys. B 20 126201
[35] Havva B O, Kemal C, Engin D and Haci O 2012 Chin. Phys. B 21 047101
[36] Hao X, Xu Y, Wu Z, Zhou D, Liu X, Cao X and Meng J 2006 Phys. Rev. B 74 224112
[37] Kanoun M B, Goumri-Said S and Reshak A H 2009 Comput. Mater. Sci. 47 491
[38] Nieto-Sanz D, Loubeyre P, Crichton W and Mezouar M 2004 Phys. Rev. B 70 214108
[39] Hu Z G, Yoshimura M, Mori Y and Sasaki T 2004 J. Cryst. Growth 260 287
[40] Pugh S F 1954 Philos. Mag. 45 823
[41] Shein I R and Ivanovskii A L 2008 J. Phys.: Condens. Matter 20 415218
[42] Mattesini M, Ahuja R and Johansson B 2003 Phys. Rev. B 68 184108
[43] Zhang R F, Veprek S and Argon A S 2007 Appl. Phys. Lett. 91 201914
[44] Frantsevich I N, Voronov F F and Bokuta S A 1982 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka)
[45] Bouhemadou A, Khenata R and Binomran S 2011 Physica B 406 2851
[46] Kim K Y, Bretz K C, Every A G and Sachse W G 1996 J. Appl. Phys. 79 1857
[47] Zhou Q, Zhang S and Lü Y 2001 Mater. Sci. Eng. B 83 239
[48] Najafi S K, Bucur V and Ebrahimic G 2005 Mater. Lett. 59 2035
[49] Pantea C, Stroe I, Ledbetter H, Betts J B, Zhao Y, Daemen L L, Cynn H and Migliori A 2009 Phys. Rev. B 80 024112
[50] Auld B A 1973 Acoustic Fields and Waves in Solids Vol.~I (New York: John Wiley & Sons Press)
[1] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[2] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[7] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[8] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[9] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[10] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[11] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[12] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[13] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
[14] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[15] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
No Suggested Reading articles found!