Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 093402    DOI: 10.1088/1674-1056/ab343e
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Relativistic electron scattering from freely movable proton/μ+ in the presence of strong laser field

Ningyue Wang(王宁月)1, Liguang Jiao(焦利光)2, Aihua Liu(刘爱华)1,3
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 College of Physics, Jilin University, Changchun 130012, China;
3 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
Abstract  

We have investigated the electron scattering from the freely movable spin-1/2 particle in the presence of a linearly polarized laser field in the first Born approximation. The laser-dressed state of electrons is described by a time-dependent wave function which is derived from a perturbation treatment. With the aids of numerical simulations, we explore the dependencies of the differential cross section on the laser field intensity as well as the electron-impact energy. Due to the mobility of the target, the differential cross section of this process is smaller than that of Mott scattering.

Keywords:  electron scattering      movable fermion      laser assistance  
Received:  05 June 2019      Revised:  10 July 2019      Accepted manuscript online: 
PACS:  34.80.Qb (Laser-modified scattering)  
  34.80.Dp (Atomic excitation and ionization)  
  32.80.Wr (Other multiphoton processes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11774131, 91850114, 11604119, and 11627807).

Corresponding Authors:  Aihua Liu     E-mail:  aihualiu@jlu.edu.cn

Cite this article: 

Ningyue Wang(王宁月), Liguang Jiao(焦利光), Aihua Liu(刘爱华) Relativistic electron scattering from freely movable proton/μ+ in the presence of strong laser field 2019 Chin. Phys. B 28 093402

[1] Vélez F C, Kaminski J Z and Krajewska K 2019 Atoms 7 34
[2] Mott N F 1932 Proc. R. Soc. A 135 429
[3] Brown L S and Kibble T W B 1965 Phys. Rev. 133 A705
[4] Kibble T W B 1966 Phys. Rev. 150 1060
[5] Goldman I I 1964 Phys. Lett. 8 103
[6] Strickland D and Mourou G 1985 Opt. Commun. 56 219
[7] The extreme light infrastructure (ELI) project
[8] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[9] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D and Nisoli M 2006 Science 81 314
[10] Zhao K, Zhang Q, Michael C, Wu Y, Wang X W and Chang Z H 2012 Opt. Lett. 37 3891
[11] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M and Chang Z 2017 Nat. Commun. 8 186
[12] Nikishov A I and Ritus V I 1964 Sov. Phys. JETP 19 1191
[13] Narozhny N B, Nikishov A I and Ritus V I 1965 Sov. Phys. JETP 20 622
[14] Faisal F H M 1987 Theory of Multiphoton Processes (New York:Plenum)
[15] Mittleman M H 1993 Introduction to the Theory of Laser-Atom Interactions (New York:Plenum)
[16] Fedorov M V 1997 Atomic and Free Electrons in a Strong Light Field (Singapore:World Scientific)
[17] Francken P and Joachain C J 1990 J. Opt. Soc. Am. B 7 554
[18] Ehlotzky F, Jaroń A and Kamiński J Z 1998 Phys. Rep. 297 63
[19] Kaminśki J Z and Ehlotzky F 1999 Phys. Rev. A 59 2105
[20] Panek P, Kaminśki J Z and Ehlotzky F 1999 Can. J. Phys. 77 591
[21] Szymanowski C, Véniard V, Taïeb R, Maquet A and Keitel C H 1997 Phys. Rev. A 56 3846
[22] Li S M, Berakdar J, Chen J and Zhou Z F 2003 Phys. Rev. A 67 063409
[23] Attaourti Y, Manaut B and Taj S 2004 Phys. Rev. A 70 023404
[24] Manaut B, Taj S and Attaourti Y 2005 Phys. Rev. A 71 043401
[25] Bai L, Zheng M Y and Wang B H 2012 Phys. Rev. A 85 013402
[26] Lebed A A 2015 Laser Phys. 25 055301
[27] Roshchupkin S P and Lebed A A 2014 Phys. Rev. A 90 035403
[28] Hrour E, Taj S, Chahboune A and Manaut B 2017 Laser Phys. 27 066003
[29] Du W Y, Zhang P F and Wang B B 2018 Front. Phys. 13 133401
[30] Hrour E, Taj S, Chahboune A, Idrissi M E and Manaut B 2016 Can. J. Phys 94 645
[31] Jiao L G, Zhou Y J and Yu R M 2009 Chin. Phys. Lett. 26 023401
[32] Li J M, Yao Y K, Sun L H, Shan X Y, Wang C and Lu X H 2019 Chin. Phys. Lett. 36 048201
[33] Jiang J, Dong C Z, Xie L U, Wang J G, Yan J and Fritzsche S 2007 Chin. Phys. Lett. 24 691
[34] Jia S Q 2019 Chin. Phys. Lett. 36 010401
[35] Cheng Y J and Zhou Y J 2011 Chin. Phys. Lett. 28 093402
[36] Yu R M, Cheng Y J, Jiao L G and Zhou Y J 2012 Chin. Phys. Lett. 29 053401
[37] Liu A H and Li S M 2014 Phys. Rev. A 90 055403
[38] Bula C 1996 Phys. Rev. Lett. 76 3116
[39] Volkov D M 1935 Z. Phys. 94 250
[40] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York:McGraw-Hill)
[1] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[2] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[3] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[4] Selection rules for electric multipole transition of triatomic molecule in scattering experiments
Hong-Chun Tian(田红春), Long-Quan Xu(徐龙泉), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(4): 043101.
[5] Path integral approach to electron scattering in classical electromagnetic potential
Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏). Chin. Phys. B, 2016, 25(5): 050303.
[6] Selection rules for electric multipole transition of diatomic molecule in scattering experiments
Zhu Lin-Fan (朱林繁), Tian Hong-Chun (田红春), Liu Ya-Wei (刘亚伟), Kang Xu (康旭), Liu Guo-Xing (刘国兴). Chin. Phys. B, 2015, 24(4): 043101.
[7] Ionization cross sections for electron scattering from metastable rare-gas atoms (Ne* and Ar*)
Zhang Yong-Zhi (张永志), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(7): 073402.
[8] Influence of drain bias on the electron mobility in the AlGaN/AlN/GaN heterostructure field-effect transistors
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军), Dun Shao-Bo (敦少博), Liu Bo (刘波), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Fang Yu-Long (房玉龙), Lin Zhao-Jun (林兆军), Meng Ling-Guo (孟令国), Luan Chong-Biao (栾崇彪). Chin. Phys. B, 2013, 22(6): 067104.
[9] Momentum-space calculation of electron-CO elastic collision
Wang Yuan-Cheng (王远成), Ma Jia (马佳), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(2): 023402.
[10] Total cross sections for electron scattering from sulfur compounds
Tan Xiao-Ming (谭晓明), Wang Yan-Wen (王艳文). Chin. Phys. B, 2013, 22(2): 023403.
[11] Electron inelastic mean free paths in solids: A theoretical approach
Siddharth H. Pandya, B. G. Vaishnav, K. N. Joshipura. Chin. Phys. B, 2012, 21(9): 093402.
[12] Total cross sections for electron scattering from fluoromethanes: A revised additivity rule method
Tan Xiao-Ming(谭晓明) and Zhao Gang(赵刚) . Chin. Phys. B, 2012, 21(6): 063402.
[13] Charging dynamics of polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results
Cao Meng (曹猛), Wang Fang (王芳), Liu Jing (刘婧), Zhang Hai-Bo (张海波). Chin. Phys. B, 2012, 21(12): 127901.
[14] Additivity rule for electron--molecule total cross section calculations at 50--5000eV: a new geometrical approach
Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), Zhu Zun-Lüe(朱遵略), and Liu Yu-Fang(刘玉芳) . Chin. Phys. B, 2008, 17(6): 2103-2109.
[15] Absolute differential, elastic integrated and moment transfer cross sections for electron--OCS collisions at intermediate and high energies
Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), Zhu Zun-Lue(朱遵略), Ma Heng(马恒), Liu Yu-Fang(刘玉芳), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(6): 1655-1659.
No Suggested Reading articles found!