Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 054701    DOI: 10.1088/1674-1056/22/5/054701
RAPID COMMUNICATION Prev   Next  

Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas

Zhang Yin (张因)a, Li Yin-Chang (李寅阊)a, Liu Rui (刘锐)a, Cui Fei-Fei (崔非非)b, Pierre Evesquec, Hou Mei-Ying (厚美瑛)a
a Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Physics, Beijing Institute of Technology, Beijing 100081, China;
c Laboratory MSSMat, UMR 8579 CNRS, Ecole Centrale Paris, 92295 Chatenay-Malabry, France
Abstract  The clustering behavior of a mono-disperse granular gas is experimentally studied in an asymmetric two-compartment setup. Unlike the random clustering in either compartment in the case of symmetric configuration when lowering the shaking strength to below a critical value, the directed clustering is observed, which corresponds to an imperfect pitchfork bifurcation. Numerical solutions of the flux equation using a modified simple flux function show qualitative agreements with the experimental results. The potential application of this asymmetric structure is discussed.
Keywords:  compartmentalized granular gases      directed clustering      imperfect pitchfork bifurcation  
Received:  04 December 2012      Revised:  23 December 2012      Accepted manuscript online: 
PACS:  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  45.70.-n (Granular systems)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11034010 and 11274354), the Chinese Academy of Sciences "Strategic Priority Research Program - SJ-10" (Grant No. XDA04020200), and the Special Fund for Earthquake Research of China (Grant No. 201208011).
Corresponding Authors:  Hou Mei-Ying     E-mail:  mayhou@aphy.iphy.ac.cn

Cite this article: 

Zhang Yin (张因), Li Yin-Chang (李寅阊), Liu Rui (刘锐), Cui Fei-Fei (崔非非), Pierre Evesque, Hou Mei-Ying (厚美瑛) Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas 2013 Chin. Phys. B 22 054701

[1] Schumaker M F and Horsthemke W 1987 Phys. Rev. A 36 354
[2] Abshagen J and Pfister G 2008 Phys. Rev. E 78 046206
[3] Juel A, Darbyshire A G and Mullin T 1997 Proc. R. Soc. A 453 2627
[4] Yabuzaki T, Okamoto T, Kitano M and Ogawa T 1984 Phys. Rev. A 29 1964
[5] Hou M, Li Y, Liu R, Zhang Y and Lu K 2010 Physica. Status Solidi A 207 2739
[6] Li Y, Liu R and Hou M 2012 Phys. Rev. Lett. 109 198001
[7] Eggers J 1999 Phys. Rev. Lett. 83 5322
[8] van der Weele K, van der Meer D, Versluis M and Lohse D 2001 Europhys. Lett. 53 328
[9] van der Meer D, van der Weele K and Lohse D 2002 Phys. Rev. Lett. 88 174302
[10] Mikkelsen R, van der Meer D, van der Weele K and Lohse D 2002 Phys. Rev. Lett. 89 214301
[11] Mikkelsen R, van der Meer D, van der Weele K and Lohse D 2004 Phys. Rev. E 70 061307
[12] van der Weele K, Kanellopoulos G, Tsiavos C and van der Meer D 2009 Phys. Rev. E 80 011305
[13] Kanellopoulos G and van der Weele K 2008 Critical Flow of Granular Matter on a Conveyor Belt June 29-July 13 2008, Maribor, Slovenia, pp. 112-121
[14] Martin T W, Huntley J M and Wildman R D 2005 J. Fluid Mech. 535 325
[15] Brey J J and Ruiz-Montero M J 2003 Phys. Rev. E 67 021307
[16] Li Y, Hou M and Evesque P 2011 Journal of Physics: Conference Series 327 012034
[17] Hussain Shah S, Li Y, Cui F, Evesque P and Hou M 2012 Chin. Phys. Lett. 29 034501
[18] Hussain Shah S, Li Y, Cui F, Evesque P and Hou M 2010 Chin. Phys. Lett. 29 034501
[19] Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S and Scherer V 2007 Powder Technol. 171 157
[20] Brey J J, Moreno F, Garcya-Rojo R and Ruiz-Montero M J 2001 Phys. Rev. E 65 011305
[21] Isert N, MaaB C C and Aegerter C M 2009 Eur. Phys. J. E 28 205
[1] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[2] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[3] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[4] Biphasic behavior of energy in a stepped chain
Ping-Jian Wang(王平建), Ai-Xiang He(何爱香), Zhong-Hai Lin(林忠海), Guang-Fen Wei(魏广芬), Yan-Li Liu(刘燕丽). Chin. Phys. B, 2016, 25(6): 064501.
[5] Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation
Zhu Zhi-Wen (竺致文), Zhang Qing-Xin (张庆昕), Xu Jia (许佳). Chin. Phys. B, 2014, 23(8): 088201.
[6] Modulational instability of optically induced nematicon propagation
L. Kavitha, M. Venkatesh, S. Dhamayanthi, D. Gopi. Chin. Phys. B, 2013, 22(12): 129401.
[7] Comparison of performance between bipolar and unipolar double-frequency sinusoidal pulse width modulation in a digitally controlled H-bridge inverter system
Lei Bo (雷博), Xiao Guo-Chun (肖国春), Wu Xuan-Lü (吴旋律). Chin. Phys. B, 2013, 22(6): 060509.
[8] Parameter design of a liquid-filled sloshing system
Zhong Shun (钟顺), Chen Yu-Shu (陈予恕). Chin. Phys. B, 2012, 21(12): 124701.
[9] Maturing process of solitary wave train in a step-down chain
Xia Ji-Hong(夏继宏), Wang Ping-Jian(王平建), and Liu Chang-Song(刘长松) . Chin. Phys. B, 2012, 21(2): 024501.
[10] Dynamic bifurcation of a modified Kuramoto–Sivashinsky equation with higher-order nonlinearity
Huang Qiong-Wei(黄琼伟) and Tang Jia-Shi(唐驾时) . Chin. Phys. B, 2011, 20(9): 094701.
[11] The construction of homoclinic and heteroclinic orbitals in asymmetric strongly nonlinear systems based on the Pad'e approximant
Feng Jing-Jing(冯晶晶), Zhang Qi-Chang(张琪昌), and Wang Wei(王炜) . Chin. Phys. B, 2011, 20(9): 090202.
[12] Lattice Boltzmann simulation of fluid flows in two-dimensional channel with complex geometries
Wen Bing-Hai(闻炳海), Liu Hai-Yan(刘海燕), Zhang Chao-Ying(张超英), and Wang Qiang(王强). Chin. Phys. B, 2009, 18(10): 4353-4359.
[13] Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control
Liu Yu-Liang(刘玉良), Zhu Jie(朱杰), and Luo Xiao-Shu(罗晓曙). Chin. Phys. B, 2009, 18(9): 3772-3776.
[14] Mode coupling in nonlinear Kelvin--Helmholtz instability
Wang Li-Feng(王立锋), Ye Wen-Hua(叶文华), Li Ying-Jun(李英骏), and Meng Li-Min(孟立民). Chin. Phys. B, 2008, 17(10): 3792-3798.
No Suggested Reading articles found!