Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 094701    DOI: 10.1088/1674-1056/20/9/094701
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Dynamic bifurcation of a modified Kuramoto–Sivashinsky equation with higher-order nonlinearity

Huang Qiong-Wei(黄琼伟) and Tang Jia-Shi(唐驾时)
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
Abstract  Under the periodic boundary condition, dynamic bifurcation and stability in the modified Kuramoto—Sivashinsky equation with a higher-order nonlinearity μ(ux)puxx are investigated by using the centre manifold reduction procedure. The result shows that as the control parameter crosses a critical value, the system undergoes a bifurcation from the trivial solution to produce a cycle consisting of locally asymptotically stable equilibrium points. Furthermore, for cases in which the distances to the bifurcation points are small enough, one-order approximations to the bifurcation solutions are obtained.
Keywords:  Kuramoto—Sivashinsky equation      centre manifold reduction      dynamic bifurcation  
Received:  23 March 2011      Revised:  05 May 2011      Accepted manuscript online: 
PACS:  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  02.30.Oz (Bifurcation theory)  
  05.45.-a (Nonlinear dynamics and chaos)  

Cite this article: 

Huang Qiong-Wei(黄琼伟) and Tang Jia-Shi(唐驾时) Dynamic bifurcation of a modified Kuramoto–Sivashinsky equation with higher-order nonlinearity 2011 Chin. Phys. B 20 094701

[1] Sivashinsky G I 1980 SIAM J. Appl. Math. 39 67
[2] Kuramoto Y and Tsuzuki T 1976 Prog. Theo. Phys. 55 356
[3] Qi H J, Huang L H, Shao J D and Fan Z X 2003 Acta Phys. Sin. 52 2743 (in Chinese)
[4] Temam R 1988 Infinite-Dimensional Dynamical Systems in Mechanics and Physics (New York: Springer- Verlag)
[5] Yang T 1997 Phys. D 110 25
[6] Ma T and Wang S 2005 Bifurcation Theory and Applications (Singapore: World Scientific)
[7] Li C and Chen G 2002 Int. J. Bifurcat. Chaos 12 103
[8] Elder K R, Gunton J D and Goldenfeld N 1997 Phys. Rev. E 56 1631
[9] Armaou A and Christofides P D 2000 Phys. D 137 49
[10] Politi P and Misbah C 2007 Phys. Rev. E 75 027202
[11] Yao R, Jiao X and lou S 2008 Commun. Theor. Phys. 51 785
[12] Huang Q W and Tang J S 2010 Commun. Theor. Phys. 54 685
[13] Huang Q W and Tang J S 2010 Discrete Cont. Dyn. Sys. B 14 129
[14] Tang J S, Zhao M H, Han F and Zhang L 2011 Chin. Phys. B 20 020504
[15] Mo J Q and Chen X F 2010 Chin. Phys. B 19 100203
[16] Zhao D M and Zhang Q C 2010 Chin. Phys. B 19 030518
[17] Wang W, Zhang Q C and Tian R L 2010 Chin. Phys. B 19 030517
[18] Wen Z H and Mo J Q 2010 Acta Phys. Sin. 59 8311 (in Chinese)
[19] Wen J Y, Fu W B, Huang Q W and Yang X L 2011 J. Dyn. Control 9 40 (in Chinese)
[1] Nonlinear consensus protocols for multi-agent systems based on centre manifold reduction
Li Yu-Mei(李玉梅) and Guan Xin-Ping(关新平). Chin. Phys. B, 2009, 18(8): 3355-3366.
No Suggested Reading articles found!