Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 064501    DOI: 10.1088/1674-1056/25/6/064501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Biphasic behavior of energy in a stepped chain

Ping-Jian Wang(王平建), Ai-Xiang He(何爱香), Zhong-Hai Lin(林忠海), Guang-Fen Wei(魏广芬), Yan-Li Liu(刘燕丽)
School of Information & Electronics Engineering, Shandong Institute Of Business and Technology, Yantai 264005, China
Abstract  

The impact energy decay in a step-up chain containing two sections is numerically studied. There is a marked biphasic behavior of energy decay in the first section. Two sections close to the interface are in compression state. The degree of compression of the first section first decreases and becomes weakest at “crossing” time of biphasic behavior of energy, then increases. The further calculations provide the dependence of the character time on mass ratio (m1/m2), where m1 and m2 are the particle mass in the first and second section respectively. The bigger the α (α =[(Ωm1-m2)/(Ωm1+m2)]2 with Ω =1.345), the bigger the energy ratio is. The multipulse structure restricts the transport of energy.

Keywords:  granular chain      solitary      biphasic behavior  
Received:  15 December 2015      Revised:  17 January 2016      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61174007 and 61307041) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AL014).

Corresponding Authors:  Ping-Jian Wang     E-mail:  pjianwang@sdibt.edu.cn

Cite this article: 

Ping-Jian Wang(王平建), Ai-Xiang He(何爱香), Zhong-Hai Lin(林忠海), Guang-Fen Wei(魏广芬), Yan-Li Liu(刘燕丽) Biphasic behavior of energy in a stepped chain 2016 Chin. Phys. B 25 064501

[1] Nesterenko V F 1984 J. Appl. Mech. Tech. Phys. 5 733
[2] Coste C, Falcon E and Fauve S 1997 Phys. Rev. E 56 6104
[3] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Oxford University Press) Chap. 3, ISBN-0198553757
[4] Sen S, Manciu M and Manciu F S 1999 Appl. Phys. Lett. 75 1479
[5] Nesterenko V F 2001 Dynamics of Heterogeneous Materials (New York: Springer) Chap. 1
[6] Sen Surajit and Manciu Marian 2001 Phys. Rev. E 64 056605
[7] Hong J and Xu A 2002 Appl. Phys. Lett. 81 4868
[8] Nesterenko V F, Daraio C, Herbold E B and Jin S 2005 Phys. Rev. Lett. 95 158702
[9] Vergara L 2005 Phys. Rev. Lett. 95 108002
[10] Vergara L 2006 Phys. Rev. E 73 066623
[11] Daraio C, Nesterenko V F, Herbold E B and Jin S 2006 Phys. Rev. Lett. 96 058002
[12] Melo F, Job S, Santibanez F and Tapia F 2006 Phys. Rev. E 73 041305
[13] Wen Z Y, Wang S J, Zhang X M and Li L 2007 Chin. Phys. Lett. 24 2887
[14] Wang P J, Xia J H, Li Y D and Liu C S 2007 Phys. Rev. E 76 041305
[15] Job S, Melo F, Sokolow A and Sen S 2007 Granular Matter. 10 13
[16] Wang P J, Li Y D, Xia J H and Liu C S 2008 Phys. Rev. E (R) 77 060301
[17] Wang P J, Xia J H, Liu C S and Yan L 2011 Acta Phys. Sin. 60 014501 (in Chinese)
[18] Ram C, Abdul Q, Shi Q F, Zheng N and Sun G 2011 Chin. Phys. Lett. 28 098301
[19] Sun Q C and Ji S Y 2011 Chin. Phys. Lett. 28 064501
[20] Xia J H, Wang P J and Liu C S 2012 Chin. Phys. B 21 024501
[21] Chen Y P, Pierre E and Hou M Y 2012 Chin. Phys. Lett. 29 074501
[22] Chen Q, Yang X Q, Wang Z H and Zhao X Y 2012 Chin. Phys. Lett. 29 014501
[23] Cai L, Yang J, Rizzo P, Ni X and Daraio C 2013 Granular Matter 3 357
[24] Chen Q, Yang X Q, Zhao Z H and Zhao Y M 2013 Chin. Phys. B 22 014501
[25] Machado L P, Rosas A and Lindenberg K 2014 Eur. Phys. J. E 11 1
[26] Huang D C, Chen W Z, Yang A N, Sun M, Hu F L and Zhao M 2014 Acta Phys. Sin. 63 154502 (in Chinese)
[27] Chen Q and Hou M Y 2014 Chin. Phys. B 23 074501
[28] Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q and Jin F 2014 Chin. Phys. B 23 076301
[29] Zheng H P 2014 Chin. Phys. B 23 054503
[30] Meng F J and Liu K 2014 Acta Phys. Sin. 63 134502 (in Chinese)
[31] Przedborski M, Harroun T A and Sen S 2015 Phys. Rev. E 91 042207
[32] Liu S W, Yang Y Y, Duan W S and Yang L 2015 Phys. Rev. E 92 013202
[33] He F F, Peng Z, Yan X P and Jiang Y M 2015 Acta Phys. Sin. 64 134503 (in Chinese)
[34] Yang L, Hu L and Zhang X G 2015 Acta Phys. Sin 64 134502 (in Chinese)
[35] Yu T, Zhang G H, Sun Q C, Zhao X D and Ma W B 2015 Acta Phys. Sin. 64 044501 (in Chinese)
[36] Hu M B, Dang S C, Hu M Q and Xia W D 2015 Chin. Phys. B 24 074502
[37] Liu Y and Zhao J H 2015 Chin. Phys. B 24 034502
[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[6] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[7] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[8] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[9] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[10] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[11] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[12] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[13] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[14] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[15] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
No Suggested Reading articles found!