Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 054301    DOI: 10.1088/1674-1056/22/5/054301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Benchmark solutions for sound propagation in an ideal wedge

Luo Wen-Yu (骆文于)a, Yang Chun-Mei (杨春梅)a b, Qin Ji-Xing (秦继兴)a b, Zhang Ren-He (张仁和)a
a State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution, and hence provides an ideal benchmark for a full two-way solution to the wave equation. An analytical solution for the sound propagation in an ideal wedge with a pressure-release bottom was presented by Buckingham and Tolstoy [Buckingham and Tolstoy 1990 J. Acoust. Soc. Am. 87 1511]. The ideal wedge problem with a rigid bottom is also of great importance in underwater acoustics. We present an analytical solution to the ideal wedge problem with a perfectly reflecting bottom, either rigid or pressure-release, which may be used to provide a means for investigating the sound field in depth-varying channels, and to establish the accuracy of numerical propagation models. Closed-form expressions for coupling matrices are also provided for the ideal waveguides characterized by a homogeneous water column bounded by perfectly reflecting boundaries. A comparison between the analytical solution and the numerical solution recently proposed by Luo et al. [Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302] is also presented, through which the accuracy of this numerical model is illustrated.
Keywords:  coupled-mode theory      wedge-shaped waveguide      perfectly reflecting boundary      benchmark solution  
Received:  21 August 2012      Revised:  10 October 2012      Accepted manuscript online: 
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Gv (Backscattering, echoes, and reverberation in water due to combinations of boundaries)  
  43.20.Fn (Scattering of acoustic waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11125420 and 10734100) and the Knowledge Innovation Program of the Chinese Academy of Sciences.
Corresponding Authors:  Luo Wen-Yu     E-mail:  lwy@mail.ioa.ac.cn

Cite this article: 

Luo Wen-Yu (骆文于), Yang Chun-Mei (杨春梅), Qin Ji-Xing (秦继兴), Zhang Ren-He (张仁和) Benchmark solutions for sound propagation in an ideal wedge 2013 Chin. Phys. B 22 054301

[1] Collis J M, Siegmann W L, Jensen F B, Zampolli M, Küsel E T and Collins M D 2008 J. Acoust. Soc. Am. 123 51
[2] Thompson L L 2006 J. Acoust. Soc. Am. 119 1315
[3] Pierce A D 1965 J. Acoust. Soc. Am. 37 19
[4] Porter M B, Jensen F B and Ferla C M 1991 J. Acoust. Soc. Am. 89 1058
[5] Wang H Z, Wang N and Gao D Z 2012 J. Acoust. Soc. Am. 131 1047
[6] Gao B, Yang S E, Piao S C and Huang Y W 2010 Sci. China-Phys. Mech. Astron. 53 2216
[7] Luo W Y and Schmidt H 2009 J. Acoust. Soc. Am. 125 52
[8] Fawcett J A 1992 J. Acoust. Soc. Am. 92 290
[9] Godin O A 1998 J. Acoust. Soc. Am. 103 159
[10] Abawi A T 2002 J. Acoust. Soc. Am. 111 160
[11] Athanassoulis G A, Belibassakis K A, Mitsoudis D A, Kampanis N A and Dougalis V A 2008 J. Comp. Acoustics 16 83
[12] Evans R B 1983 J. Acoust. Soc. Am. 74 188
[13] Evans R B 1986 J. Acoust. Soc. Am. 80 1414
[14] Abawi A T, Kuperman W A and Collins M D 1997 J. Acoust. Soc. Am. 102 233
[15] Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302
[16] Luo W Y, Yang C M, Qin J X and Zhang R H 2012 Sci. China-Phys. Mech. Astron. 55 572
[17] Buckingham M J and Tolstoy A 1990 J. Acoust. Soc. Am. 87 1511
[18] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Washington DC: National Bureau of Standards) pp. 366-367
[19] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics (2nd edn.) (New York: Springer) pp. 344-349
[20] Mattheij R M M 1985 SIAM Rev. 27 1
[21] Felsen L B 1986 J. Acoust. Soc. Am. (Suppl. 1) 80 S36
[22] Felsen L B 1987 J. Acoust. Soc. Am. (Suppl. 1) 81 S39
[23] Jensen F B and Ferla C M 1990 J. Acoust. Soc. Am. 87 1499
[24] Porter M B 1991 The KRAKEN Normal Mode Program (Technical Report No. SM-245) (La Spezia: SACLANT Undersea Research Center)
[1] A three-dimensional coupled-mode model for the acoustic field in a two-dimensional waveguide with perfectly reflecting boundaries
Wen-Yu Luo(骆文于), Xiao-Lin Yu(于晓林), Xue-Feng Yang(杨雪峰), Ze-Zhong Zhang(张泽众), Ren-He Zhang(张仁和). Chin. Phys. B, 2016, 25(12): 124309.
[2] Complete leaky mode coupling in dual-core photonic crystal fibre based on the coupled-mode theory
Yuan Jin-Hui(苑金辉), Yu Chong-Xiu(余重秀), Sang Xin-Zhu(桑新柱), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(6): 064101.
[3] Analysis and engineering of coupled cavity waveguides based on coupled-mode theory
Lin Xu-Sheng (林旭升), Chen Xiong-Wen (陈雄文), Lan Sheng (兰胜). Chin. Phys. B, 2005, 14(10): 2033-2040.
No Suggested Reading articles found!