Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 036102    DOI: 10.1088/1674-1056/22/3/036102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optical study of D–D neutron irradiation-induced defects in Co- and Cu-doped ZnO wafers

Wang Yun-Bo (王云波), Li Gong-Ping (李公平), Xu Nan-Nan (许楠楠), Pan Xiao-Dong (潘小东)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  Room-temperature photoluminescence and optical transmittance spectroscopy of Co-doped (1×1014,5×1016, and 1×1017 cm-2) and Cu-doped (5×1016 cm-2) ZnO wafers irradiated by D–D neutrons (fluence of 2.9×1010 cm-2) have been investigated. After irradiation, the Co or Cu metal and oxide clusters in doped ZnO wafers are dissolved, and the würtzite structure of ZnO substrate for each sample remains unchanged and keeps in high c-axis preferential orientation. The degree of irradiation-induced crystal disorder reflected from absorption band tail parameter (E0) is far greater for doped ZnO than undoped one. Under the same doping concentration, the Cu-doped ZnO wafer has much higher irradiation-induced disorder than the Co-doped one. Photoluminescence measurements indicate that the introduction rate of both zinc vacancy and zinc interstitial is much higher for the doped ZnO wafer with high doping level than the undoped one. In addition, both crystal lattice distortion and defect complexes are suggested to be formed in doped ZnO wafers. Consequently, the Co- or Cu-doped ZnO wafer (especially with high doping level) exhibits very low radiation hardness compared with the undoped one, and the Cu-doped ZnO wafer is much less radiation-hard than the Co-doped one.
Keywords:  D–D neutron irradiation      ZnO wafer      Co      Cu  
Received:  18 June 2012      Revised:  19 September 2012      Accepted manuscript online: 
PACS:  61.80.Hg (Neutron radiation effects)  
  61.82.Fk (Semiconductors)  
  61.72.J- (Point defects and defect clusters)  
  78.55.Et (II-VI semiconductors)  
Fund: Project supported by the Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education at Lanzhou University of China (Grant No. LZUMMM2012003), the Chunhui Project of the Ministry of Education of China (Grant No. Z2008-1-62023), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 860452).
Corresponding Authors:  Li Gong-Ping     E-mail:  ligp@lzu.edu.cn

Cite this article: 

Wang Yun-Bo (王云波), Li Gong-Ping (李公平), Xu Nan-Nan (许楠楠), Pan Xiao-Dong (潘小东) Optical study of D–D neutron irradiation-induced defects in Co- and Cu-doped ZnO wafers 2013 Chin. Phys. B 22 036102

[1] Ohno H 1998 Science 281 951
[2] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science287 1019
[3] Ramachandran S, Tiwari A and Narayan J 2004 Appl. Phys. Lett. 845255
[4] Dinia A, Ayoub J P, Schmerber G, Beaurepaire E, Muller D and GrobJ J 2004 Phys. Lett. A 333 152
[5] Kolesnik S, Dabrowski B and Mais J 2004 J. Appl. Phys. 95 2582
[6] Kumar R, Singh F, Angadi B, Choi J W, Choi W K, Jeong K, Song JH, Khan M W, Srivastava J P, Kumar A and Tandon R P 2006 J. Appl.Phys. 100 113708
[7] Liu X C, Shi E W, Chen Z Z, Zhang H W, Song L X, Wang H and YaoS D 2006 J. Cryst. Growth 296 135
[8] Herng T S, Lau S P, Yu S F, Yang H Y, Ji X H, Chen J S, Yasui N andInaba H 2006 J. Appl. Phys. 99 086101
[9] Chakraborti D, Narayan J and Prater J T 2007 Appl. Phys. Lett. 90062504
[10] Li T J, Li G P, Chen J S, Gao X X, Pan X D, Ma J P and Wang Y B2010 Sci. China-Phys. Mech. Astron. 53 1819
[11] Li T J, Li G P, Chen J S, Gao X X and Chen J S 2010 Chin. Phys. Lett.27 087501
[12] Gao X X, Li G P, Li T J, Pan X D, Hu F C, He B and Bao L M 2011Integr. Ferroelectr. 128 14
[13] Leutwein K and Schneider J 1971 Z. Naturforsch. A 26 1236
[14] Look D C, Reynolds D C, Hemsky J W, Jones R L and Sizelove J R1999 Appl. Phys. Lett. 75 811
[15] Auret F D, Goodman S A, Hayes M, Legodi M J, Laarhoven H A andLook D C 2001 Appl. Phys. Lett. 79 3074
[16] Tuomisto F, Saarinen K, Look D C and Farlow G C 2005 Phys. Rev. B72 085206
[17] Chen Z Q, Wang S J, Maekawa M, Kawasuso A, Naramoto H, Yuan XL and Sekiguchi T 2007 Phys. Rev. B 75 245206
[18] Evans S M, Giles N C, Halliburton L E and Kappers L A 2008 J. Appl.Phys. 103 043710
[19] Zubiaga A, Tuomisto F, Coleman V A and Jagadish C 2008 Appl. Surf.Sci. 255 234
[20] Cho S, Ma J, Kim Y K, Sun Y, Wong J K L and Ketterson J B 1999Appl. Phys. Lett. 75 2761
[21] Karali T, Can N, Valberg L, Stepanov A L, Townsend P D, Buchal C,Ganeev R A, Ryasnyansky A I, Belik H G, JessettML and Ong C 2005Physica B 363 88
[22] Dutta S, Chattopadhyay S, Jana D, Banerjee A, Manik S, Pradhan S K,Sutradhar M and Sarkar A 2006 J. Appl. Phys. 100 114328
[23] Srikant V and Clarke D R 1998 J. Appl. Phys. 83 5447
[24] Kim K J and Park Y R 2002 Appl. Phys. Lett. 81 1420
[25] Srikant V and Clarke D R 1997 J. Appl. Phys. 81 6357
[26] Zhu H C, Iqba J, Xu H J and Yu D P 2008 J. Chem. Phys. 129 124713
[27] Liu Y M, Fang Q Q, Wu M Z, Li Y, L¨u Q R, Zhou J and Wang B M2007 J. Phys. D: Appl. Phys. 40 4592
[28] Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A andGnade B E 1996 J. Appl. Phys. 79 7983
[29] Wu X L, Siu G G, Fu C L and Ong H C 2001 Appl. Phys. Lett. 78 2285
[30] Mahamuni S, Borgohain K, Bendre B S, Leppert V J and Risbud S H1999 J. Appl. Phys. 85 2861
[31] Xu X L, Lau S P, Chen J S, Chen G Y and Tay B K 2001 J. Cryst.Growth 223 201
[32] Jin B J, Im S and Lee S Y 2000 Thin Solid Films 366 107
[33] Jeong S H, Kim B S and Lee B T 2003 Appl. Phys. Lett. 82 2625
[34] Lin B X, Fu Z X and Jia Y B 2001 Appl. Phys. Lett. 79 943
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[3] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[4] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[5] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[6] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[7] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[8] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[9] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[10] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[11] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[12] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[13] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[14] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[15] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
No Suggested Reading articles found!