Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030502    DOI: 10.1088/1674-1056/22/3/030502
GENERAL Prev   Next  

Noise destroys the coexisting of periodic orbits of a piecewise linear map

Wang Can-Jun (王参军)a b, Yang Ke-Li (杨科利)a b, Qu Shi-Xian (屈世显)a
a Institute of Theoretical & Computational Physics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;
b Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China
Abstract  The effects of the Gaussian white noise and the Gaussian colored noise on the periodic orbits of period-5 (P-5) and period-6 (P-6) in their coexisting domain of a piecewise linear map are investigated numerically. The probability densities of some orbits are calculated. When the noise intensity is D=0.0001, only the orbits of P-5 exist, and the coexisting phenomenon is destroyed. On the other hand, the self-correlation time τ of the colored noise also affects the coexisting phenomenon. When τc<τ<τc', only the orbits of P-5 appear, and the stability of the orbits of P-5 is enhanced. However, when τ>τc' (τc and τc' are critical values), only the orbits of P-6 exist, and the stability of the orbits of P-6 is enhanced greatly. When τ<τc, the orbits of P-5 and P-6 coexist, but the stability of the orbits of P-5 is enhanced and that of P-6 is weakened with τ increasing.
Keywords:  piecewise linear map      noise      periodic orbit  
Received:  19 July 2012      Revised:  10 September 2012      Accepted manuscript online: 
PACS:  05.40.Ca (Noise)  
  05.45.Ac (Low-dimensional chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875076), the Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 12JK0962), and the Science Foundation of Baoji University of Science and Arts of China (Grant No. ZK11053).
Corresponding Authors:  Qu Shi-Xian     E-mail:  sxqu@snnu.edu.cn

Cite this article: 

Wang Can-Jun (王参军), Yang Ke-Li (杨科利), Qu Shi-Xian (屈世显) Noise destroys the coexisting of periodic orbits of a piecewise linear map 2013 Chin. Phys. B 22 030502

[1] Wu D J, Cao L and Ke S Z 1994 Phys. Rev. E 50 2496
[2] Cao L, Wu D J and Ke S Z 1995 Phys. Rev. E 52 3228
[3] Mantegna R N and Spagnolo B 1996 Phys. Rev. Lett. 76 563
[4] Mielke A 2000 Phys. Rev. Lett. 84 818
[5] Ai B Q, Wang X J, Liu G T and Liu L G 2003 Phys. Rev. E 67 022903
[6] Mei D C, Xie C W and Zhang L 2004 Eur. Phys. J. B 41 107
[7] Wang C J, Wei Q and Mei D C 2008 Phys. Lett. A 372 2176
[8] Wang C J, Wei Q and Zheng B B 2008 Acta Phys. Sin. 57 1375 (in Chinese)
[9] Jiang L L, Luo X Q, Wu D and Zhu S Q 2012 Chin. Phys. B 21 090503
[10] Liu Q and Jia Y 2004 Phys. Rev. E 70 041907
[11] Jia Z L and Mei D C 2012 Eur. Phys. J. B 85 139
[12] Yang M, Li X L and Wu D J 2012 Acta Phys. Sin. 61 160502 (in Chinese)
[13] Zhang L, Yuan X H and Wu L 2012 Acta Phys. Sin. 61 110501 (in Chinese)
[14] Guo Y F and Tan J G 2012 Acta Phys. Sin. 61 170502 (in Chinese)
[15] Duan W L, Yang L J and Mei D C 2011 Chin. Phys. B 20 030503
[16] Crutchfield J P and Huberman B A 1980 Phys. Lett. A 77 407
[17] Crutchfield J P, Farmer J D and Huberman B A 1982 Phys. Rep. 92 45
[18] Gao J B, Hwang S K and Liu J M 1999 Phys. Rev. Lett. 82 1132
[19] Hwang S K, Gao J B and Liu J M 2000 Phys. Rev. E 61 5162
[20] Serletis A, Shahmoradi A and Serletis D 2007 Chaos Soliton. Fract. 33 914
[21] Serletis A, Shahmoradi A and Serletis D 2007 Chaos Soliton. Fract. 32 883
[22] Serletis D 2008 Chaos Soliton. Fract. 38 921
[23] Li F G 2008 Cent. Eur. J. Phys. 6 539
[24] Li F G and Ai B Q 2011 Commun. Theor. Phys. 55 1001
[25] Grudzinski K and Zebrowski J 2004 Physica A 336 153
[26] He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W and Christiansen B 1994 Physica D 79 335
[27] Wang J, Ding X L, Hu Bambi Hu, Wang B H, Mao J S and He D R 2001 Phys. Rev. E 64 026202
[28] Ren H P and Liu D 2005 Chin. Phys. 14 1352
[29] He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B and Wang B H 1992 Phys. Lett. A 171 61
[30] Qu S X, Wu S G and He D R 1998 Phys. Rev. E 57 402
[31] Qu S X, Wu S G and He D R 1997 Phys. Lett. A 231 152
[32] Qu S X, Lu R Z, Zhang L and He D R 2008 Chin. Phys. B 17 4418
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[6] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[7] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[8] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[9] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[10] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[11] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[12] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[13] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[14] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[15] Vacuum-gap-based lumped element Josephson parametric amplifier
Sishi Wu(吴思诗), Dengke Zhang(张登科), Rui Wang(王锐), Yulong Liu(刘玉龙), Shuai-Peng Wang(王帅鹏), Qichun Liu(刘其春), J S Tsai(蔡兆申), and Tiefu Li(李铁夫). Chin. Phys. B, 2022, 31(1): 010306.
No Suggested Reading articles found!