Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030501    DOI: 10.1088/1674-1056/22/3/030501
GENERAL Prev   Next  

Quantum mechanical version of classical Liouville theorem

Xie Chuan-Mei (谢传梅)a, Fan Hong-Yi (范洪义)b
a College of Physics & Material Science, Anhui University, Hefei 230039, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  In terms of the coherent state evolution in phase space, we present a quantum mechanical version of the classical Liouville theorem. The evolution of coherent state from |z〉to |sz-rz*〉angle corresponds to the motion from a point z(q,p) to another point sz-rz* with |s|2-|r|2=1. The evolution is governed by the so-called Fresnel operator U(s,r) recently proposed in quantum optics theory, which classically corresponds to the matrix optics law and the optical Fresnel transformation and obeys the group product rules. In another word, we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space, which seems to be a combination of quantum statistics and quantum optics.
Keywords:  Fresnel operator      Liouville theorem      quantum mechanical version  
Received:  07 June 2012      Revised:  29 August 2012      Accepted manuscript online: 
PACS:  05.20.-y (Classical statistical mechanics)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Project supported by the Doctoral Scientific Research Startup Fund of Anhui University, China (Grant No. 33190059), the National Natural Science Foundation of China (Grant No. 10874174), the Research Fund for the Doctoral Program of Higher Education of China (New Teacher) (Grant No. 20113401120004), and the Open Funds from the National Laboratory for Infrared Physics, Chinese Academy of Sciences (Grant No. 201117).
Corresponding Authors:  Xie Chuan-Mei     E-mail:  xiecmei@mail.ustc.edu.cn

Cite this article: 

Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义) Quantum mechanical version of classical Liouville theorem 2013 Chin. Phys. B 22 030501

[1] Schleich W P 2000 Quantumm Optics in Phase Space (Berlin: Wiley-VCH)
[2] Xu X L, Ren T Q, Li H Q and Zhang Y H 2012 Chin. Phys. B 21 010305
[3] Li H M and Xu X F 2012 Chin. Phys. B 21 024202
[4] Zhang B L, Meng X G and Wang J S 2012 Chin. Phys. B 21 030304
[5] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[6] Fan H Y and Lu H L 2006 Opt. Commun. 258 51
[7] Fan H Y and Lu H L 2005 Phys. Lett. A 334 132
[8] Wang S 2009 Phys. Lett. A 373 2824
[9] Fan H Y, Lu H L and Fan Y 2006 Annals of Physics 321 480
[10] Fan H Y and Hu L Y 2008 Chin. Phys. B 17 1640
[11] Sakurai J J 1994 Modern Quantum Mechanics (New York: Addison-Wesley)
[12] Xie C M, Fan H Y and Wan S L 2010 Chin. Phys. B 19 064207
[13] Liu T K, Shan C J, Liu J B and Fan H Y 2010 Chin. Phys. B 19 090307
[14] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[15] Fan H Y, Xu X X, Yuan H C, Wang S, Wang Z, Xu P and Jiang N Q 2011 Chin. Phys. B 20 070301
[16] Fan H Y, Lu H L, Gao W B and Xu Y F 2006 Annals of Physics 321 2116
[17] Xie C M and Fan H Y 2011 Chin. Phys. B 20 060303
[18] Xie C M and Fan H Y 2012 Chin. Phys. B 21 044203
[1] New decomposition of the Fresnel operator corresponding to optical transformation in ABCD-systems
Du Jian-Ming (杜建明), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(6): 060302.
[2] New approach to Q-P (P-Q) ordering of quantum mechanical operators and its applications
Hu Li-Yun (胡利云), Zhang Hao-Liang (张浩亮), Jia Fang (贾芳), Tao Xiang-Yang (陶向阳). Chin. Phys. B, 2013, 22(12): 120301.
[3] The two-mode quantum Fresnel operator and the multiplication rule of 2D Collins diffraction formula
Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(4): 044203.
[4] New theorem relating two-mode entangled tomography to two-mode Fresnel operator
Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(1): 010302.
[5] Four-mode coherent-entangled state and its application
Li Hong-Qi(李洪奇), Ren Ting-Qi(任廷琦), Zhang Yun-Hai(张运海), and Xu Xing-Lei(徐兴磊) . Chin. Phys. B, 2012, 21(1): 010305.
[6] A new theorem relating quantum tomogram to the Fresnel operator
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2011, 20(6): 060303.
[7] A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation
Xie Chuan-Mei(谢传梅), Fan Hong-Yi(范洪义), and Wan Shao-Long(完绍龙). Chin. Phys. B, 2010, 19(6): 064207.
[8] Optical scaled Fresnel--Fourier transform obtained via intermediate coordinate-- momentum representation
Li Chi-Sheng(李迟生) and Luo Han-Wen(罗汉文). Chin. Phys. B, 2010, 19(1): 010308.
[9] Quantum optical ABCD theorem in two-mode case
Fan Hong-Yi(范洪义) and Hu Li-Yun(胡利云). Chin. Phys. B, 2008, 17(5): 1640-1644.
No Suggested Reading articles found!