Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030503    DOI: 10.1088/1674-1056/22/3/030503
GENERAL Prev   Next  

High frequency forcing on nonlinear systems

Yao Cheng-Gui (姚成贵)a, He Zhi-Wei (何志威)b c, Zhan Meng (占萌)b
a Department of Mathematics, Shaoxing University, Shaoxing 312000, China;
b Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
c Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  High-frequency signals are pervasive in many science and engineering fields. In this work, the effect of high-frequency driving on general nonlinear systems is investigated, and an effective equation for the slow motion is derived by extending the inertial approximation for the direct separation of fast and slow motions. Based on this theory, a high-frequency force can induce various phase transitions of a system by changing its amplitude and frequency. Numerical simulations on several nonlinear oscillator systems show very good agreements with the theoretic result. These findings may shed light on our understanding of the dynamics of nonlinear systems subject to a periodic force.
Keywords:  high frequency      nonlinear oscillator      inertial approximation      phase transitions  
Received:  06 July 2012      Revised:  24 August 2012      Accepted manuscript online: 
PACS:  05.40.Ca (Noise)  
  87.16.dj (Dynamics and fluctuations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205103 and 11075202).
Corresponding Authors:  Zhan Meng     E-mail:  zhanmeng@wipm.ac.cn

Cite this article: 

Yao Cheng-Gui (姚成贵), He Zhi-Wei (何志威), Zhan Meng (占萌) High frequency forcing on nonlinear systems 2013 Chin. Phys. B 22 030503

[1] Strogatz S H 1994 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Massachusetts: Perseus Books Publishing)
[2] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[3] Perez R and Glass L 1982 Phys. Lett. A 90 441
[4] Ding E J 1986 Phys. Rev. A 34 3547
[5] Parlitz U and Lauterborn W 1987 Phys. Rev. A 36 1428
[6] Rajasekar S and Lakshmanan M 1988 Physica D 32 146
[7] Linsay P S 1981 Phys. Rev. Lett. 47 1349
[8] Kao Y H and Wang C S 1993 Phys. Rev. E 48 2514
[9] Pivka L, Zheleznyak A L and Chua L O 1994 Inter. J. Bifur. Chaos Appl. Sci. Eng. 4 1743
[10] Glass L, Guevara M R and Perez A S R 1983 Physica D 7 89
[11] Epstein I R and Pojman J A 1998 An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, Topics in Physical Chemistry (New York: Oxford University Press)
[12] Tai C F, Groat W C and Roppolo J R 2005 IEEE Trans. Neural. Syst. Rehabil. Eng. 13 415
[13] Tai C F, Groat W C and Roppolo J R 2005 IEEE Trans. Neural. Syst. Rehabil. Eng. 52 1323
[14] Bhadra N, Lahowetz E A, Foldes S T and Kilgore K L 2007 J. Comput. Neurosci. 22 313
[15] Wang L Y and Kaczmarek L K 1998 Nature 394 384
[16] Koblischka M R, Wei J D, Kirsch M and Hartmann U 2006 Jpn. J. Appl. Phys. 45 2238
[17] Blekhman I I 2000 Vibrational Mechanics. Nonlinear Dynamic Effects, General Approach, Applications (Singapore: World Scientific Press)
[18] Blekhman I I 2004 Selected Topics in Vibrational Mechanics (Singapore: World Scientific Press)
[19] Thomsen J J 2005 Inter. J. Bifur. Chaos 15 2799
[20] Thomsen J J 2008 J. Sound Vibr. 311 1249
[21] Kivshar Y S, Rodelsperger P and Benner H 1994 Phys. Rev. E 49 319
[22] Landa P S and McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433
[23] Liang R Y, Xi J, Zhao L, Zou C R and Wei C H 2012 Acta. Phys. Sin. 61 134305 (in Chinese)
[24] Zhang L, Zhong S C and Peng H 2012 Acta. Phys. Sin. 61 130503 (in Chinese)
[25] Wang C J 2012 Acta. Phys. Sin. 61 010503 (in Chinese)
[26] Jiang L L, Luo X Q and Wu D 2012 Chin. Phys. B 21 090503
[27] Yang J H and Liu X B 2010 Chin. Phys. B 19 050504
[28] Ullner E, Zaikin A, García-Ojalvo J, Bascones R and Kurths J 2003 Phys. Lett. A 312 348
[29] Deng B, Wang J, Wei X L, Tsang K M and Chan W L 2010 Chaos 20 013113
[30] Deng B, Wang J and Wei X L 2009 Chaos 19 013117
[31] Cubero D, Baltanás J P and Casado-Pascual J 2006 Phys. Rev. E 73 061102
[32] Blekhman I I and Landa P S 2004 Int. J. Non-Linear Mech. 39 421
[33] Casado-Pascual J and Baltanás J P 2004 Phys. Rev. E 69 046108
[34] Chizhevsky V N and Giacomelli G 2006 Phys. Rev. E 73 022103
[35] Chizhevsky V N and Giacomelli G 2004 Phys. Rev. E 70 062101
[36] Chizhevsky V N and Giacomelli G 2005 Phys. Rev. A 71 011801
[37] Khovanov I A and McClintock P V E 2007 Phys. Rev. E 76 031122
[38] Yao C G and Zhan M 2010 Phys. Rev. E 81 061129
[39] Yao C G, Liu Y and Zhan M 2011 Phys. Rev. E 83 061122
[40] Gandhimathi V M, Rajasekar S and Kurths J 2006 Phys. Lett. A 360 279
[41] Jeyakumari S, Chinnathambi V, Rajasekar S and Sanjuan M A F 2009 Phys. Rev. E 80 046608
[42] Jeyakumari S, Chinnathambi V, Rajasekar S and Sanjuan M A F 2009 Chaos 19 043128
[43] Zaikin A A, López L, Baltanás J P, Kurths J and Sanjuan M A F 2002 Phys. Rev. E 66 011106
[44] Gandhimathi V M, Rajasekar S and Kurths J 2006 Phys. Lett. A 360 279
[45] Chizhevsky V N, Smeu E and Giacomelli G 2003 Phys. Rev. Lett. 91 220602
[46] Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J and Sanjuan M A F 2003 Phys. Rev. E 67 066119
[47] Hu G, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807
[48] Rappel W J and Strogatz S H 1994 Phys. Rev. E 50 3249
[49] Meucci R, Gadomski W, Ciofini M and Arecchi F T 1994 Phys. Rev. E 49 R2528
[50] Qu Z L, Hu G, Yang G and Qin G R 1995 Phys. Rev. Lett. 74 1736
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[3] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[4] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[5] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[6] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[7] Discontinuous and continuous transitions of collective behaviors in living systems
Xu Li(李旭), Tingting Xue(薛婷婷), Yu Sun(孙宇), Jingfang Fan(樊京芳), Hui Li(李辉), Maoxin Liu(刘卯鑫), Zhangang Han(韩战钢), Zengru Di(狄增如), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2021, 30(12): 128703.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[10] Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks
M Kurt, H Yurtseven, A Kurt, S Aksoy. Chin. Phys. B, 2019, 28(6): 066401.
[11] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[12] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[13] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[14] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[15] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
No Suggested Reading articles found!