Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030210    DOI: 10.1088/1674-1056/22/3/030210
GENERAL Prev   Next  

Modified Burgers equation by local discontinuous Galerkin method

Zhang Rong-Pei (张荣培)a, Yu Xi-Jun (蔚喜军)b, Zhao Guo-Zhong (赵国忠)c
a School of Sciences, Liaoning ShiHua University, Fushun 113001, China;
b Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
c Faculty of Mathematics, Baotou Normal College, Baotou 014030, China
Abstract  In this paper, we present the local discontinuous Galerkin method for solving Burgers’ equation and the modified Burgers’ equation. We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail. The method is applied to the solution of the one-dimensional viscous Burgers’ equation and two forms of the modified Burgers’ equation. The numerical results indicate that the method is very accurate and efficient.
Keywords:  local discontinuous Galerkin method      Burgers equation      modified Burgers&rsquo      equation  
Received:  30 August 2012      Revised:  18 September 2012      Accepted manuscript online: 
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035, 11171038, and 10771019), the Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ12198), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2012MS0102).
Corresponding Authors:  Zhang Rong-Pei     E-mail:  rongpeizhang@163.com

Cite this article: 

Zhang Rong-Pei (张荣培), Yu Xi-Jun (蔚喜军), Zhao Guo-Zhong (赵国忠) Modified Burgers equation by local discontinuous Galerkin method 2013 Chin. Phys. B 22 030210

[1] Cockburn B and Shu C W 1998 SIAM J. Numer. Anal. 35 2440
[2] Kadalbajoo M K and Awasthi A 2006 Appl. Math. Comput. 182 1430
[3] Bratsos A G 2010 Comput. Math. Appl. 60 1393
[4] Vasilyev O V and Paolucci S 1996 J. Comput. Phys. 125 498
[5] Bateman H 1915 Mon. Weather Rev. 43 163
[6] Burgers J M 1948 Adv. Appl. Mech. 1 171
[7] Brezis H and Browder F 1998 Adv. Math. 135 76
[8] Zuo J M and Zhang Y M 2011 Chin. Phys. B 20 010205
[9] Wu Q K 2012 Acta Phys. Sin. 61 020203 (in Chinese)
[10] Ramadan M A and El-Danaf T S 2005 Math. Comput. Simul. 70 90
[11] Dağ I, Irk D and Saka B 2005 Appl. Math. Comput. 163 199
[12] Saka B and Dağ I 2008 J. Franklin Inst. 345 328
[13] Duan Y, Liu R and Jiang Y 2008 Appl. Math. Comput. 202 489
[14] Bassi F and Rebay S 1997 J. Comput. Phys. 131 267
[15] Cockburn B and Shu C W 2001 J. Sci. Comp. 16 173
[16] Cockburn B and Shu C W 1989 Math. Comp. 52 411
[17] Li B Q 2006 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer (Springer)
[18] Huang P and Abduwali A 2010 Comput. Math. Appl. 59 2452
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[5] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[6] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[7] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[8] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[9] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[10] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[11] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[12] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[13] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[14] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[15] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
No Suggested Reading articles found!