Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030209    DOI: 10.1088/1674-1056/22/3/030209
GENERAL Prev   Next  

Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations

Cai Jia-Xiang (蔡加祥), Yang Bin (杨斌), Liang Hua (梁华)
School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China
Abstract  We propose multisymplectic implicit and explicit Fourier pseudospectral methods for the Klein–Gordon–Schrödinger equations. We prove that the implicit method satisfies the charge conservation law exactly. Both methods provide accurate solutions in long-time computations and simulate the soliton collision well. Numerical results show the abilities of the two methods in preserving charge, energy, and momentum conservation laws.
Keywords:  Klein–Gordon–Schrödinger equations      multisymplectic method      Fourier pseudospectral method      conservation law  
Received:  12 July 2012      Revised:  05 September 2012      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  02.70.Hm (Spectral methods)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11201169) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 10KJB110001).
Corresponding Authors:  Cai Jia-Xiang     E-mail:  thomasjeer@sohu.com

Cite this article: 

Cai Jia-Xiang (蔡加祥), Yang Bin (杨斌), Liang Hua (梁华) Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations 2013 Chin. Phys. B 22 030209

[1] Zhang L 2005 Appl. Math. Comput. 163 343
[2] Xanthopoulos P and Zouraris G E 2008 Discrete Contin. Dyn. Syst. Ser. B 10 239
[3] Wang S and Zhang L 2008 Appl. Math. Comput. 203 799
[4] Xiang X 1988 J. Comput. Appl. Math. 21 161
[5] Bao W and Yang L 2007 J. Comput. Phys. 225 1863
[6] Marsden J E, Patrick G P and Shkoller S 1998 Comm. Math. Phys. 199 351
[7] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[8] Reich S 2000 J. Comput. Phys. 157 473
[9] Ascher U M and McLachlan R I 2004 Appl. Numer. Math. 48 255
[10] Chen J B and Qin M Z 2001 Electron. Trans. Numer. Anal. 12 193
[11] Hu W P and Deng Z C 2008 Chin. Phys. B 17 3923
[12] Wang Y S and Li S T 2010 Inter. J. Comput. Math. 87 775
[13] Lv Z Q, Xue M and Wang Y S 2011 Chin. Phys. Lett. 28 060205
[14] Cai J X and Miao J 2012 Chin. Phys. Lett. 29 030201
[15] Qian X, Song S H, Gao E and Li W B 2012 Chin. Phys. B 21 070206
[16] Zhang R P, Yu X J and Feng T 2012 Chin. Phys. B 21 030202
[17] Wang H and Li B 2011 Chin. Phys. B 20 040203
[18] Wang J 2009 J. Phys. A: Math. Theor. 42 085205
[19] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613
[20] Sun Y and Tse P S P 2011 J. Comput. Phys. 230 2076
[21] Kong L H, Liu R and Xu Z 2006 Appl. Math. Comput. 181 342
[22] Kong L H, Zhang J J, Cao Y, Duan Y and Huang H 2010 Comput. Phys. Commun. 181 1369
[23] Hong J L, Jiang S S and Li C 2009 J. Comput. Phys. 228 3517
[1] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[2] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[3] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[4] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[5] Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity
Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌). Chin. Phys. B, 2017, 26(10): 100202.
[6] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[7] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[8] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[9] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[10] Conservation laws of the generalized short pulse equation
Zhang Zhi-Yong (张智勇), Chen Yu-Fu (陈玉福). Chin. Phys. B, 2015, 24(2): 020201.
[11] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林). Chin. Phys. B, 2015, 24(10): 100203.
[12] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋). Chin. Phys. B, 2014, 23(8): 080204.
[13] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[14] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[15] Riccati-type Bäcklund transformations of nonisospectral and generalized variable-coefficient KdV equations
Yang Yun-Qing (杨云青), Wang Yun-Hu (王云虎), Li Xin (李昕), Cheng Xue-Ping (程雪苹). Chin. Phys. B, 2014, 23(3): 030506.
No Suggested Reading articles found!