Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030204    DOI: 10.1088/1674-1056/22/3/030204
GENERAL Prev   Next  

Stability and Neimark-Sacker bifurcation analysis of food-limited population model with time delay

Jiang Xiao-Wei (姜晓伟)a, Guan Zhi-Hong (关治洪)a, Zhang Xian-He (张先鹤)b, Zhang Ding-Xue (张顶学)c, Liu Feng (刘峰)d
a Department of Control Sclience and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
b College of Mechatronics and Control Engineering, Hubei Normal University, Huangshi 435002, China;
c Petroleum Engineering College, Yangtze University, Jingzhou 434023, China;
d Department of Electronic Information and Mechanics, China University of Geosciences, Wuhan 430074, China
Abstract  In this paper, a kind of discrete delay food-limited model obtained by Euler method is investigated, where the discrete delay τ is regarded as a parameter. By analyzing the associated characteristic equation, the linear stability of this model is studied. It is shown that Neimark–Sacker bifurcation occurs when τ crosses some critical values. The explicit formulae which determine the stability, direction, and other properties of bifurcating periodic solution are derived by means of the theory of center manifold and normal form. Finally, numerical simulations are performed to verify the analytical results.
Keywords:  food-limited model      time delay      Neimark-Sacker bifurcation      periodic solution  
Received:  11 June 2012      Revised:  15 August 2012      Accepted manuscript online: 
PACS:  02.30.Ks (Delay and functional equations)  
  02.30.Oz (Bifurcation theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60973012, 61073025, 61073026, 61170031, and 61100076).
Corresponding Authors:  Guan Zhi-Hong     E-mail:  zhguan@mail.hust.edu.cn

Cite this article: 

Jiang Xiao-Wei (姜晓伟), Guan Zhi-Hong (关治洪), Zhang Xian-He (张先鹤), Zhang Ding-Xue (张顶学), Liu Feng (刘峰) Stability and Neimark-Sacker bifurcation analysis of food-limited population model with time delay 2013 Chin. Phys. B 22 030204

[1] Li N, Sun H Y and Zhang Q L 2012 Chin. Phys. B 21 010503
[2] He W L, Qian F, Cao J D and Han Q L 2011 Phys. Lett. A 375 498
[3] Xiao M, Cao J D and Zheng W X 2011 J. Franklin Inst. 348 2647
[4] Liu X Y and Sun J X 2012 Nonlinear Anal. TMA 75 7
[5] Syed A M 2012 Chin. Phys. B 21 070207
[6] Wang N 2012 Chin. Phys. B 21 010202
[7] Mohamad S and Naim A 2002 J. Comput. Appl. Math. 138 1
[8] Vilone D, Robledo A and Sanchez A 2011 Phys. Rev. Lett. 107 038101
[9] Liu X and Xiao D M 2007 Chaos Soliton. Fract. 32 80
[10] Agiza H, Elabbasy E, Elmetwally H and Elsadany A 2009 Nonlinear Anal. RWA 10 116
[11] He Z M and Lai X 2011 Nonlinear Anal. RWA 12 403
[12] Han W and Liu M X 2011 Appl. Math. Comput. 217 5449
[13] Zhang C, Liu M and Zheng B 2003 Appl. Math. Comput. 146 335
[14] Liu N, Guan Z H and Zhang H 2009 Chin. Phys. B 18 1769
[15] Liu F, Guan Z H and Wang H O 2008 Chin. Phys. B 17 2405
[16] Guan Z H, Liu F, Li J and Wang Y W 2012 Chaos 22 023137
[17] Ye Z Y, Deng C B and Yang G 2011 Chin. Phys. B 20 010207
[18] Hassard B, Kazarinoff D and Wan Y 1981 Theory and Applications of Hopf Bifurcation (Cambridge: Cambridge University Press)
[19] Ruan S and Wei J 2003 Dynam. Cont. Dis. SER. A 10 863
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[4] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[9] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[10] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[11] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[12] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[13] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[14] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[15] Attosecond transient absorption spectroscopy: Comparative study based on three-level modeling
Zeng-Qiang Yang(杨增强), Di-Fa Ye(叶地发), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(1): 013301.
No Suggested Reading articles found!