CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Al-doping-induced magnetocapacitance in the multiferroic CuCrS2 |
Liu Rong-Deng (刘荣灯)a b, Liu Yun-Tao (刘蕴韬)a, Chen Dong-Feng (陈东风)a, He Lun-Hua (何伦华)b, Yan Li-Qin (闫丽琴)b, Wang Zhi-Cui (王志翠)b, Sun Yang (孙阳)b, Wang Fang-Wei (王芳卫)b |
a China Institute of Atomic Energy, Beijing 102413, China; b State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In this paper, magnetic and dielectric properties of the quasi-two-dimensional triangular-lattice system CuCrS2 and its B-site-diluted analogs CuAl1-xCrxS2 (x=0.01 and x=0.02) are investigated. Antiferromagnetic phase transition is observed at about 38.5 K by magnetization measurement without shift induced by a small amount of dopping Al. Magnetodielectric effect is found near TN in each of the three compounds. The dielectric constant decreases and the magnetocapacitance increases with the increase of substitution of nonmagnetic Al3+ ions for the magnetic Cr3+ ions. The negative magnetocapacitive effect reaches ~13% for CuAl0.02Cr0.98S2.
|
Received: 14 May 2012
Revised: 06 September 2012
Accepted manuscript online:
|
PACS:
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB833102) and the National Natural Science Foundation of China (Grant No. 10974244). |
Corresponding Authors:
Wang Fang-Wei
E-mail: fwwang@aphy.iphy.ac.cn
|
Cite this article:
Liu Rong-Deng (刘荣灯), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Wang Fang-Wei (王芳卫) Al-doping-induced magnetocapacitance in the multiferroic CuCrS2 2013 Chin. Phys. B 22 027507
|
[1] |
Choudhury N, Walizer L, Lisenkov S and Bellaiche L 2011 Nature 470 513
|
[2] |
Takagi H and Hwang H Y 2010 Science 327 1601
|
[3] |
Kimura K, Nakamura H, Kimura S, Hagiwara M and Kimura T 2009 Phys. Rev. Lett. 103 107201
|
[4] |
Spaldin N A and Fiebig M 2005 Science 309 391
|
[5] |
Zhang C H, Xu Z, Gao J J, Zhu C J and Yao X 2011 Chin. Phys. B 20 097702
|
[6] |
Ding B F and Zhou S Q 2011 Chin. Phys. B 20 127701
|
[7] |
Yan L Q, He L H, Wang F W and Shen J 2011 Chin. Phys. B 20 097503
|
[8] |
Rasch J C E, Boehm M, Ritter C, Mutka H, Schefer J, Keller L, Abramova G M, Cervellino A and Loffler J F 2009 Phys. Rev. B 80 104431
|
[9] |
Luo S J, Wang K F, Li S Z, Dong X W, Yan Z B, Cai H L and Liu J M 2009 Appl. Phys. Lett. 94 172504
|
[10] |
Kundys B, Maignan A, Pelloquin D and Simon C 2009 Solid State Sci. 11 1035
|
[11] |
Kanetsuki S, Mitsuda S, Nakajima T, Anazawa D, Katori H A and Prokes K 2007 J. Phys.: Condens. Matter 19 145244
|
[12] |
Terada N, Mitsuda S and Gukasov A 2006 Phys. Rev. B 73 014419
|
[13] |
Abramova G M, Petrakovskiy G A, Vtyurin A N, Rasch J C E, Krylov A S, Gerasimova J V, Velikanov D A, Boehm V M and Sokolov V 2010 J. Raman Spectrosc. 41 1485
|
[14] |
Abramova G, Pankrats A, Petrakovskii G, Rasch J C E, Boehm M, Vorotynov A, Tugarinov V, Szumszak R, Bovina A and Vasilev V 2010 J. Appl. Phys. 107 093914
|
[15] |
Tsujii N and Kitazawa H 2007 J. Phys.: Condens. Matter 19 145245
|
[16] |
Tsujii N, Kitazawa H and Kido G 2006 Phys. Stat. Sol. C 3 2775
|
[17] |
Almukhametov R F, Yakshibayev R A, Gabitov E V, Abdullin A R and Kutusheva R M 2003 Phys. Stat. Sol. B 236 29
|
[18] |
Seki S, Onose Y and Tokura Y 2008 Phys. Rev. Lett. 101 067204
|
[19] |
Beck M, Ellner M and Mittemeijer E J 2001 Acta Mater. 49 985
|
[20] |
Greedan J E 2001 J. Mater. Chem. 11 37
|
[21] |
Huang Z J, Cao Y, Sun Y Y, Xue Y Y and Chu C W 1997 Phys. Rev. B 56 2623
|
[22] |
Yan L Q, Sun Z H, He L H, Shen J, Zhang J and Wang F W 2008 J. Appl. Phys. 103 07E308
|
[23] |
Yang Y, Liu J M, Huang H B, Zou W Q, Bao P and Liu Z G 2004 Phys. Rev. B 70 132101
|
[24] |
Fan J, Dong X W, Song Y, Wang K F, Liu J M and Jiang X P 2011 Chin. Phys. B 20 027502
|
[25] |
Catalan G 2006 Appl. Phys. Lett. 88 102902
|
[26] |
Ritus A I, Pronin A V, Volkov A A, Lunkenheimer P, Loidl A, Shcheulin A S and Ryskin A I 2002 Phys. Rev. B 65 165209
|
[27] |
Catalan G, Neill D O, Bowman R M and Gregg J M 2000 Appl. Phys. Lett. 77 3078
|
[28] |
Schmid H 2008 J. Phys.: Condens. Matter 20 434201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|