Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 123601    DOI: 10.1088/1674-1056/21/12/123601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Structures, stabilities, and electronic properties of GaAs tubelike clusters and single-walled GaAs nanotubes

Liu Li-Ren (刘立仁)a, Zhu Heng-Jiang (祝恒江)a, Liu Zhi-Feng (刘志锋)b, Wu Peng (吴鹏)a
a School of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054, China;
b College of Physics, Chongqing University, Chongqing 401331, China
Abstract  The geometric structures, stabilities, and electronic properties of (GaAs)n tubelike clusters at up to n=120 and single-walled GaAs nanotubes (GaAsNTs) were studied by density functional theory (DFT) calculations. A family of stable tubelike structures with Ga-As alternating arrangement were observed when n≥8 and their structure units (four-membered rings and six-membered rings) obey the general developing formula. The average binding energies of the clusters show that the tubelike cluster with eight atoms in the cross section is the most stable cluster. The size-dependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully. They also illustrate the reason why GaAsNTs can be synthesized experimentally. We also found that the single-walled GaAsNTs can be prepared by the proper assembly of tubelike clusters to form semiconductors with large bandgap.
Keywords:  (GaAs)n tubelike clusters      GaAs nanotube      density functional theory      electronic property  
Received:  02 July 2012      Revised:  26 August 2012      Accepted manuscript online: 
PACS:  36.40.Qv (Stability and fragmentation of clusters)  
  36.20.Kd (Electronic structure and spectra)  
  61.46.Fg (Nanotubes)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Key Subject of Theoretical Physics of Xinjiang Uygur Autonomous Region (Young Teachers Scientific Research Fund), China, the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2010211A21), and the Key Project of Higher Education of Xinjiang Uygur Autonomous Region, China (Grant No. xjedu2009i27).
Corresponding Authors:  Zhu Heng-Jiang     E-mail:  zhj@xjnu.edu.cn

Cite this article: 

Liu Li-Ren (刘立仁), Zhu Heng-Jiang (祝恒江), Liu Zhi-Feng (刘志锋), Wu Peng (吴鹏) Structures, stabilities, and electronic properties of GaAs tubelike clusters and single-walled GaAs nanotubes 2012 Chin. Phys. B 21 123601

[1] Dobrowolski W, Kossut J and Story T 2003 Handb. Magn. Mater. 15 289
[2] Kamat P V 1993 Chem. Rev. 93 267
[3] Cox S D, Gier T E, Stucky G D and Bierlein J J 1988 J. Am. Chem. Soc. 110 2986
[4] Wang Y and Herron N J 1988 J. Phys. Chem. 92 4988
[5] Cooke M 2006 III-Vs Rev. 19 18
[6] Dong J R, Yang H, Tian C, Huang J and Zhang H Y 2012 Chin. Phys. B 21 067303
[7] Ge J, Liu H G, Su Y B, Cao Y X and Jin Z 2012 Chin. Phys. B 21 058501
[8] Chen L, Qian Y S, Zhang Y J and Chang B K 2012 Chin. Phys. B 21 034214
[9] Gu L Y, Li Y F, Chu W D and Wei Y H 2012 Chin. Phys. B 21 037301
[10] Patriarche G, Glas F, Tchernycheva M, Sartel C, Largeau L, Harmand J C and Cirlin G E 2008 Nano. Lett. 8 1638
[11] Song B and Cao P L 2002 Phys. Lett. A 300 485
[12] Gutsev G L, Oneal R H, Saha B C, Mochena M D, Johnson E and Bauschlicher C W Jr 2008 J. Phys. Chem. A 112 10728
[13] Qu Y H, Ma W Y, Bian X F, Tang H W and Tian W X 2005 J. Mol. Graph. Model 24 167
[14] Goldberger J, He R, Zhang Y, Lee S, Choi H J and Yang P 2003 Nature 422 599
[15] Xu Z, Golberg D and Bandoa Y 2009 Chem. Phys. Lett. 480 110
[16] Guo Y H, Yan X H and Yang Y R 2009 Phys. Lett. A 373 367
[17] Karamanis P, Carbonniere P and Pouchan C 2009 Phys. Rev. A 80 053201
[18] Gutsev G L, Johnson E, Mochena M D and Bauschlicher C W Jr 2008 J. Chem. Phys. 128 144707
[19] Ghosh C, Pal S, Goswami B and Sarkar P 2007 J. Phys. Chem. C 111 12284
[20] Sarkar P and Springborg M 2003 Phys. Rev. B 68 235409
[21] Ghosh C, Pal S, Goswami B and Sarkar P 2005 Chem. Phys. Lett. 407 498
[22] Brena B and Ojamae L 2008 J. Phys. Chem. C 112 13516
[23] Becke A D 1988 Phys. Rev. A 38 3098
[24] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[25] Wadt W R and Hay P J 1985 J. Chem. Phys. 82 284
[26] Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision B.03 Gaussian Inc.: Wallingford CT
[27] Stevenson A W 1994 Acta Crystallographica A 50 621
[28] Zhao J J, Xie R H, Zhou X L, Chen X S and Lu W 2006 Phys. Rev. B 74 035319
[29] Zhang S L, Zhang Y H, Huang S P, Liu H and Tian H P 2010 Chem. Phys. Lett. 498 172
[30] Shen X Y, Xu Y G, He C L, Liu H T and Li J M 2005 Eur. Phys. J. D 34 109
[31] Mulliken R S 1955 J. Chem. Phys. 23 1841
[32] Chen Q S 2010 "The First Principles Study of GaAs'optical Properties and Electricity Properties" (MS Thesis) (Xian: Xidian University) (in Chinese)
[33] Alam K M and Ray A K 2008 Phys. Rev. B 77 035436
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!