Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 118902    DOI: 10.1088/1674-1056/21/11/118902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling online social networks based on preferential linking

Hu Hai-Bo (胡海波)a, Guo Jin-Li (郭进利)b, Chen Jun (陈骏 )a
a Department of Management, East China University of Science and Technology, Shanghai 200237, China;
b School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of the online social networks.
Keywords:  online social network      preferential linking      model      power law  
Received:  05 April 2012      Revised:  09 May 2012      Accepted manuscript online: 
PACS:  89.65.-s (Social and economic systems)  
  89.75.Hc (Networks and genealogical trees)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61104139, 70871082, and 71101053) and the ECUST for Excellent Young Scientists, China.
Corresponding Authors:  Hu Hai-Bo     E-mail:  sdhuzi@163.com

Cite this article: 

Hu Hai-Bo (胡海波), Guo Jin-Li (郭进利), Chen Jun (陈骏 ) Modeling online social networks based on preferential linking 2012 Chin. Phys. B 21 118902

[1] O'Reilly T 2007 Comm. Strat. 1 17
[2] Lewis K, Kaufman J, Gonzalez M, Wimmer A and Christakis N 2008 Social Networks 30 330
[3] Traud A L, Mucha P J and Porter M A 2012 Physica A 391 4165
[4] Jiang J, Wilson C, Wang X, Huang P, Sha W, Dai Y and Zhao B Y 2010 Proceedings of the 10th Annual Conference on Internet Measurement, November 1-3, 2010 Melbourne, Australia, p. 369
[5] Ahn Y Y, Han S, Kwak H, Moon S and Jeong H 2007 Proceedings of the 16th International Conference on World Wide Web, May 8-12, 2007 Banff, Canada, p. 835
[6] Bainbridge W S 2007 Science 317 472
[7] Lazer D, Pentland A, Adamic L, Aral S, Barabási A L, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D and Van Alstyne M 2009 Science 323 721
[8] Bai M, Hu K and Tang Y 2011 Chin. Phys. B 20 128902
[9] Holme P, Edling C R and Liljeros F 2004 Social Networks 26 155
[10] Viswanath B, Mislove A, Cha M and Gummadi K P 2009 Proceedings of the 2nd ACM Workshop on Online Social Networks, August 16-21, 2009 Barcelona, Spain, p. 37
[11] Hu H and Wang X 2009 Phys. Lett. A 373 1105
[12] Chun H, Kwak H, Eom Y H, Ahn Y Y, Moon S and Jeong H 2008 Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, October 20-22, 2008 Vouliagmeni, Greece, p. 57
[13] Szell M and Thurner S 2010 Social Networks 32 313
[14] Robins G, Snijders T, Wang P, Handcock M and Pattison P 2007 Social Networks 29 192
[15] Hu H B and Guo J L 2012 Advances in Complex Systems 15 1250030
[16] Grindrod P and Parsons M 2011 Physica A 390 3970
[17] Zou Z Y, Liu P, Lei L and Gao J Z 2012 Chin. Phys. B 21 028904
[18] Guo J L, Guo Z H and Liu X J 2011 Chin. Phys. B 20 118902
[19] Ren X Z, Yang Z M, Wang B H and Zhou T 2012 Chin. Phys. Lett. 29 038904
[20] Mislove A, Koppula H S, Gummadi K P, Druschel P and Bhattacharjee B 2008 Proceedings of the First Workshop on Online Social Networks, August 17-22, 2008 Seattle, USA, p. 25
[21] Leskovec J, Backstrom L, Kumar R and Tomkins A 2008 Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 24-27, 2008 Las Vegas, USA, p. 462
[22] Clauset A, Shalizi C R and Newman M E J 2009 SIAM Rev. 51 661
[23] Utz S 2010 J. Comput. Mediat. Commun. 15 314
[24] Rivera M T, Soderstrom S B and Uzzi B 2010 Annu. Rev. Sociol. 36 91
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[6] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[7] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[8] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[9] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[10] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[11] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[12] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[13] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[14] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[15] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
No Suggested Reading articles found!