Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110206    DOI: 10.1088/1674-1056/21/11/110206
GENERAL Prev   Next  

Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback

Wang Jun-Wei (王军威)a, Zeng Cai-Bin (曾才斌 )b
a School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China;
b School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China
Abstract  This paper is concerned with the problem of robust H control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties. The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H performance level for all admissible uncertainties. By constructing an appropriate Lyapunov—Krasovskii functional, a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality. From the derived criterion, the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically. A simulation example is given to illustrate the effectiveness of the proposed design method.
Keywords:  robust H control      Lyapunov stability      Jensen integral inequality      linear matrix inequality  
Received:  08 March 2012      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  02.30.Ks (Delay and functional equations)  
  87.19.lr (Control theory and feedback)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61104138), the Guangdong Natural Science Foundation, China (Grant No. S2011040001704), and the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. LYM10074).
Corresponding Authors:  Wang Jun-Wei     E-mail:  wangjunweilj@yahoo.com.cn

Cite this article: 

Wang Jun-Wei (王军威), Zeng Cai-Bin (曾才斌 ) Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback 2012 Chin. Phys. B 21 110206

[1] Zames G 1981 IEEE Trans. Autom. Control 26 301
[2] Doyle J C, Glover K, Khargonekar P P and Francis B A 1989 IEEE Trans. Autom. Control 34 831
[3] Stoorvogel A A 1993 IEEE Trans. Autom. Control 38 1358
[4] Wilson D A 1989 IEEE Trans. Autom. Control 34 94
[5] Shi G, Zou Y and Yang C 1992 Syst. Control Lett. 18 365
[6] Xie L and de Souza C E 1992 IEEE Trans. Autom. Control 37 1188
[7] Gu K 1994 IEEE Trans. Autom. Control 39 1320
[8] Yuan L, Achenie L E K and Jiang W 1996 Syst. Control Lett. 27 199
[9] Coutinho D F, de Souza C E, Barbosa K A and Trofino A 2009 SIAM J. Control Optim. 48 1452
[10] Zheng H Q and Jing Y W 2011 Chin. Phys. B 20 060504
[11] Xie L, Fu M and de Souza C E 1992 IEEE Trans. Autom. Control 37 1253
[12] de Souza C E, Fu M and Xie L 1993 IEEE Trans. Autom. Control 38 459
[13] Peter K, Schöling I and Orlik B 2003 IEEE Trans. Ind. Appl. 39 637
[14] Qiu J B, Feng G and Gao H J 2010 IEEE Trans. Fuzzy Syst. 18 919
[15] Yang G H and Ye D 2010 IET Control Theory Appl. 4 89
[16] Malek-Zavarei M and Jamshidi M 1987 Time-delay Systems: Analysis, Optimation and Application (Amsterdam: North-Holland)
[17] Gu K, Kharitonon V L and Chen J 2003 Stability of Time-delay Systems (Berlin: Springer)
[18] Bratsun D, Volfson D, Tsimring L S and Hasty J 2005 Proc. Natl. Acad. Sci. USA 102 14593
[19] Wang J W, Zhang J J, Yuan Z J, Chen A M and Zhou T S 2008 J. Biol. Rhythms 23 472
[20] Jia Z L 2010 Chin. Phys. B 19 020504
[21] Xu S Y and Chen T W 2002 IEEE Trans. Autom. Control 47 2089
[22] Li L and Jia Y 2009 IET Control Theory Appl. 3 995
[23] Peng C, Yue D and Tian Y C 2009 IEEE Trans. Fuzzy Syst. 17 890
[24] Liu J C, Zhang J, Zheng Y F and He M 2011 J. Control Theory Appl. 9 189
[25] Tian E G, Yue D and Peng C 2012 Int. J. Syst. Sci. 43 820
[26] Su H and Chu J 1999 Int. J. Syst. Sci. 30 1093
[27] Li H Y, Chen B, Zhou Q and Lin C 2009 Circuits Syst. Signal Process 28 169
[28] Senthilkumar T and Balasubramaniam P 2011 Int. J. Syst. Sci. 42 877
[29] Alpaslan Parlakci M N and Kücükdemiral .I B 2011 Int. J. Robust. Nonlinear Control 21 974
[30] Mirkin B, Mirkin E L and Gutman P O 2009 Control Signal Process 23 567
[31] Li D, Wang S L, Zhang X H and Yang D 2010 Chin. Phys. B 19 010506
[32] Syrmos V L, Abdallah C T and Grigoriadis K Automatica 33 125
[33] He Y, Wu M, Liu G P and She J H 2008 IEEE Trans. Autom. Control 53 2372
[34] Boyd S, EI Ghaout L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[35] de Oliveira M C, Bernussou J and Geromel J C 1999 Syst. Control Lett. 37 261
[36] de Souza C E and Li X 1999 Automatica 35 1313
[37] Zhu X L and Yang G H 2008 IET Control Theory Appl. 2 524
[38] Lü J, Yu X, Chen G and Cheng D 2004 IEEE Trans. Circuits Syst. I Reg. Papers 51 787
[39] Lü J and Chen G 2005 IEEE Trans. Autom. Control 50 841
[40] Lü J, Yu X and Chen G 2004 Physica A 334 281
[41] Wang P, Lü J and Ogorzalek M J 2012 Neurocomputing 78 155
[42] Chen Y, Lü J, Han F and Yu X 2011 Syst. Control Lett. 60 517
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[3] Intra-layer synchronization in duplex networks
Jie Shen(沈洁), Longkun Tang(汤龙坤). Chin. Phys. B, 2018, 27(10): 100503.
[4] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[5] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[6] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[7] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[8] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[9] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[10] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[11] Stability analysis and control synthesis of uncertain Roesser-type discrete-time two-dimensional systems
Wang Jia (王佳), Hui Guo-Tao (会国涛), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2013, 22(3): 030206.
[12] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[13] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
[14] Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions
Dai Hao (戴浩), Jia Li-Xin (贾立新), Zhang Yan-Bin (张彦斌). Chin. Phys. B, 2012, 21(12): 120508.
[15] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan (王申全), Feng Jian (冯健), Zhao Qing (赵青). Chin. Phys. B, 2012, 21(12): 120701.
No Suggested Reading articles found!