Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 093402    DOI: 10.1088/1674-1056/21/9/093402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron inelastic mean free paths in solids: A theoretical approach

Siddharth H. Pandyaa, B. G. Vaishnavb, K. N. Joshipuraa
a Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120 (Gujarat) India;
b Physical Research Laboratory, Navarangpura, Ahmedabad-380009 (Gujarat) India
Abstract  In the present paper, the inelastic mean free path (IMFP) of incident electrons is calculated as a function of energy for silicon (Si), oxides of silicon (SiO2), SiO, and Al2O3 in bulk form by employing atomic/molecular inelastic cross sections derived by semi-empirical quantum mechanical method developed earlier. A general agreement of the present results is found with the most of the available data. It is of great importance that we have been able to estimate the minimum IMFP which corresponds to the peak of inelastic interactions of incident electrons in each solid investigated. New results are presented for SiO for which no comparison is available. The present work is important in view of the lack of experimental data on IMFP in solids.
Keywords:  electron inelastic mean free path      complex potential      inelastic electron scattering cross sections      solids  
Received:  15 September 2012      Accepted manuscript online: 
PACS:  34.80.Dp (Atomic excitation and ionization)  
  34.80.Gs (Molecular excitation and ionization)  
  34.80.Ht (Dissociation and dissociative attachment)  
  72.15.Lh (Relaxation times and mean free paths)  
Fund: Project supported by the Indian Space Research Organization through Respond Project (Grant No. ISRO/RES/2/356/10-11).
Corresponding Authors:  Siddharth H. Pandya     E-mail:  siddharth033@gmail.com

Cite this article: 

Siddharth H. Pandya, B. G. Vaishnav, K. N. Joshipura Electron inelastic mean free paths in solids: A theoretical approach 2012 Chin. Phys. B 21 093402

[1] Powel C J and Jablonski A 1999 J. Phys. Chem. Ref. Data 28 19
[2] Tanuma S, Powell C J and Penn D R 1991 Surf. Interface Anal. 17 911
[3] Gries W H 1996 Surf. Interface Anal. 24 38
[4] Ashley J C, Tung C J, Anderson V E and Ritchie R H 1976 US Air Force Report RADC-TR-76-125
[5] Gergely G, Konkol A, Menyhard M, Lesiak B, Jablonski A, Varga D and Toth J 1997 Vacuum 48 621
[6] Lesiak B, Zommer L, Kosinski A, Jablonski A, Gergely G, Menyhard M, Sulyok A, Konkol A, Daroczi Cs and Nagy P 1996 Proc. ECASIA-95 (John Wiley & Sons)
[7] Koch A 1996 (Ph. D. Thesis) Eberhard-Karls-Universität, Tübingen, Germany
[8] Ziaja B, London R A and Hajdu J 2006 J. Appl. Phys. 99 033514
[9] Ashley J C, Tung C J and Ritchie R H 1979 Surf. Sci. 81 409
[10] Ashley J C 1988 J. Electron Spectrosc. Relat. Phenom. 46 199
[11] Ashley J C 1990 J. Electron Spectrosc. Relat. Phenom. 50 323
[12] Tung C J, Ashley J C and Ritchie R H 1979 Surf. Sci. 81 427
[13] Lindhard J 1954 Kgl. Danske Videnskeb., Mat.-fys. Medd. 28 2
[14] Ashley J C, Tung C J, Ritchie R H and Anderson V E 1976 IEEE Trans. Nucl. Sci. 23 1833
[15] Powell C J 1985 Surf. Interface Anal. 7 263
[16] Penn D R 1987 Phys. Rev. B 35 482
[17] Tanuma S, Powell C J and Penn D R 1988 Surf. Interface Anal. 11 577
[18] Tanuma S, Powell C J and Penn D R 1991 Surf. Interface Anal. 17 927
[19] Tanuma S, Powell C J and Penn D R 1993 Surf. Interface Anal. 20 77
[20] Tanuma S, Powell C J and Penn D R 1994 Surf. Interface Anal. 21 165
[21] Ziaja B, London R A and Hajdu J 2005 J. Appl. Phys. 97 064905
[22] Joshipura K N, Gangopadhyay S, Limbachiya C G and Vinodkumar M 2007 J. Phys.: Conf. Series 80 012008
[23] Joshipura K N, Kothari H N, Shelat F A, Bhowmik P and Mason N J 2010 J. Phys. B 43 135207
[24] Joshipura K N, Gangopadhyay S, Kothari H N and Shelat F A 2009 Phys. Lett. A 373 2876
[25] Joshipura K N and Gangopadhyay S 2008 J. Phys. B 41 215205
[26] Joshipura K N, Vaishnav B G and Gangopadhyay S 2007 Int. J. Mass Spectrom. 261 146
[27] Joshipura K N, Gangopadhyay S and Vaishnav B 2007 J. Phys. B 40 199
[28] Dingfelder M, Hantke D, Inokuti M and Paretzke H G 1998 Radiat. Phys. Chem. 53 1
[29] Michaud M, Wan A and Sanche L 2003 Radiat. Res. 159 3
[30] Michaud M, Cloutier P and Sanche L 1991 Phys. Rev. A 44 5624
[31] Salvat F and Parellada J 1984 J. Phys. D: Appl. Phys. 17 1545
[32] Staszewska D, Schwenke D W and Truhlar D G 1984 Phys. Rev. A 29 3078
[33] Timneanu N, Caleman C, Hajdu J and van der Spoel D 2004 Chem. Phys. 299 277
[34] Calogero F 1974 Variable Phase Approach to Potential Scattering (New York: Academic Press)
[35] Turner J E, Paretzke H G, Hamm R N, Wright H A and Richie R H 1982 Radiat. Res. 92 47
[36] Weinberg A M and Winger E P 1958 The Physical Theory of Neutron Chain Reactions (Chicago: the University of Chicago Press)
[37] Rewer L and Edwards R 1954 J. Phys. Chem. 58 351
[38] Rhodin T N and Gadzuk J 1979 The Nature of the Surface Chemical Bond (New York: North-Holland Pub. Co.)
[39] Penn D R 1976 J. Electron Spectrosc. Relat. Phenom. 9 29
[40] Akkerman A, Boutboul T, Breskin A, Chechik R, Gibrekhterman A and Lifshitz Y 1996 Phys. Stat. Sol. (B) 198 769
[41] Kwei C M, Chen Y F, Tung C J and Wang J P 1993 Surf. Sci. 293 202
[42] Ashlay J C and Anderson V E 1981 J. Electron Spectrosc. Relat. Phenom. 24 127
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[3] Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids
Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁). Chin. Phys. B, 2020, 29(12): 126302.
[4] Quantum light storage in rare-earth-ion-doped solids
Yi-Lin Hua(华怡林), Zong-Quan Zhou(周宗权), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2018, 27(2): 020303.
[5] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[6] Granular packing as model glass formers
Yujie Wang(王宇杰). Chin. Phys. B, 2017, 26(1): 014503.
[7] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[8] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军). Chin. Phys. B, 2015, 24(11): 116302.
[9] An application of half-terrace model to surface ripening of non-bulk GaAs layers
Liu Ke (刘珂), Guo Xiang (郭祥), Zhou Qing (周清), Zhang Bi-Chan (张毕禅), Luo Zi-Jiang (罗子江), Ding Zhao (丁召). Chin. Phys. B, 2014, 23(4): 046806.
[10] Red-shift law of intense laser-induced electro-absorption in solids
Deng Hong-Xiang (邓洪祥), Zu Hao-Yue (祖皓月), Wu Shao-Yi (邬邵轶), Sun Kai (孙凯), Zu Xiao-Tao (祖小涛). Chin. Phys. B, 2014, 23(2): 027801.
[11] Complex force network in marginally and deeply jammed solids
Hu Mao-Bin (胡茂彬), Jiang Rui (姜锐), Wu Qing-Song (吴清松). Chin. Phys. B, 2013, 22(6): 066301.
[12] Dependence of effective screening length in granular columns on bead and silo sizes and their ratio
Ali Shah, Ahmed Khan, Saeed Ahmed Khan. Chin. Phys. B, 2013, 22(5): 058301.
[13] Ripening of single-layer InGaAs islands on GaAs(001)
Liu Ke (刘珂), Zhou Qing (周清), Zhou Xun (周勋), Guo Xiang (郭祥), Luo Zi-Jiang (罗子江), Wang Ji-Hong (王继红), Hu Ming-Zhe (胡明哲), Ding Zhao (丁召). Chin. Phys. B, 2013, 22(2): 026801.
[14] Theoretical prediction of ion conductivity in solid state HfO2
Zhang Wei (张炜), Chen Wen-Zhou (陈文周), Sun Jiu-Yu (孙久雨), Jiang Zhen-Yi (姜振益). Chin. Phys. B, 2013, 22(1): 016601.
[15] Positron scattering and ionization of neon atoms —— theoretical investigations
Harshit N. Kothari and K. N. Joshipura. Chin. Phys. B, 2010, 19(10): 103402.
No Suggested Reading articles found!