Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 066301    DOI: 10.1088/1674-1056/22/6/066301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Complex force network in marginally and deeply jammed solids

Hu Mao-Bin (胡茂彬), Jiang Rui (姜锐), Wu Qing-Song (吴清松)
School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract  This paper studies the force network properties of marginally and deeply jammed packings of frictionless soft particles from the perspective of complex network theory. We generate zero-temperature granular packings at different pressures by minimizing the inter-particle potential energy. The force networks are constructed as nodes representing particles and links representing normal forces between the particles. Deeply jammed solids show remarkably different behavior from marginally jammed solids in their degree distribution, strength distribution, degree correlation, and clustering coefficient. Bimodal and multi-modal distributions emerge when the system enters deep jamming region. The results also show that small and large particles can show different correlation behavior in this simple system.
Keywords:  jamming      complex networks      amorphous solids  
Received:  03 November 2012      Revised:  28 January 2013      Accepted manuscript online: 
PACS:  63.50.Lm (Glasses and amorphous solids)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11034010).
Corresponding Authors:  Hu Mao-Bin     E-mail:  humaobin@ustc.edu.cn

Cite this article: 

Hu Mao-Bin (胡茂彬), Jiang Rui (姜锐), Wu Qing-Song (吴清松) Complex force network in marginally and deeply jammed solids 2013 Chin. Phys. B 22 066301

[1] Majmudar T S and Behringer R P 2005 Nature 435 1079
[2] Shinbrot T and Muzzio F J 2001 Nature 410 251
[3] Yan X, Shi Q, Hou M, Lu K and Chan C 2003 Phys. Rev. Lett. 91 014302
[4] Shi Q, Sun G, Hou M and Lu K 2007 Phys. Rev. E 75 061302
[5] Jiang Z, Lu K, Hou M, Chen W and Chen X 2003 Acta Phys. Sin. 52 2244 (in Chinese)
[6] Shah S H, Li Y C, Cui F F, Zhang Q and Hou M Y 2012 Chin. Phys. B 21 014501
[7] Hou M, Tu H, Liu R, Li Y, Lu K, Lai P and Chan C 2008 Phys. Rev. Lett. 100 068001
[8] Li Y, Zhang Z, Tu H, Liu R, Hu H and Hou M 2009 Acta Phys. Sin. 58 5840 (in Chinese)
[9] Li Y, Liu R and Hou M 2012 Phys. Rev. Lett. 109 198001
[10] Shah S H, Li Y C and Hou M Y 2010 Chin. Phys. B 19 108203
[11] Li Y Y, Xia W, Zhou Z Y, He K J, Zhong W Z and Wu Y B 2010 Chin. Phys. B 19 024601
[12] Qadir A, Shi Q F, Liang X W and Sun G 2010 Chin. Phys. B 19 034601
[13] Chen W, Hou M, Jiang Z, Lu K and Lam L 2001 Europhys. Lett. 56 536
[14] Huang D, G Sun, M Hou and Lu K 2006 Aata Phys. Sin. 55 4754 (in Chinese)
[15] Liu R, Li Y and Hou M 2008 Acta Phys. Sin. 67 4660 (in Chinese)
[16] Cai Q D, Chen S Y and Sheng X W 2011 Chin. Phys. B 20 024502
[17] Liu A J and Nagel S R 1998 Nature 396 21
[18] Bi D, Zhang J, Chakraborty B and Behringer R P 2011 Nature 480 355
[19] Xu N 2011 Front. Phys. China 6 109
[20] O'Hern C S, Langer S A, Liu A J and Nagel S R 2002 Phys. Rev. Lett. 88 075507
[21] O'Hern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[22] Xu N, Wyart M, Liu A J and Nagel S R 2007 Phys. Rev. Lett. 98 175502
[23] Xu N, Vitelli V, Wyart M, Liu A J and Nagel S R 2009 Phys. Rev. Lett. 102 038001
[24] Xu N, Haxton T K, Liu A J and Nagel S R 2009 Phys. Rev. Lett. 103 245701
[25] Zhang Z, Xu N, Chen D T N, et al. 2009 Nature 459 230
[26] Zhao C, Tian K and Xu N 2011 Phys. Rev. Lett. 106 125503
[27] Watts D J and Strogaz S H 1998 Nature 393 440
[28] Barabási A L and Albert R 1999 Science 286 509
[29] Boccaletti S, Latora V, Moreno Y, et al. 2006 Phys. Rep. 424 175
[30] Barthelemy M 2011 Phys. Rep. 499 1
[31] Arévalo R, Zuriguel I and Maza D 2009 Int. J. Bifur. Chaos 19 695
[32] Ben-Nun O, Einav I and Tordesillas A 2010 Phys. Rev. Lett. 104 108001
[33] Walker D M and Tordesillas A 2010 Int. J. Solids Struct. 47 624
[34] Tordesillas A, Walker D M and Lin Q 2010 Phys. Rev. E 81 011302
[35] Walker D M and Tordesillas A 2012 Phys. Rev. E 85 011304
[36] Andrade J S, Herrmann H J, Andrade R F S and da Silva L R 2005 Phys. Rev. Lett. 94 018702
[37] Johnson K L 1985 Contact Mechanics (Cambridge: Cambridge University Press)
[38] http://www.ece.northwestern.edu/~nocedal/lbfgs.html.
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Effects of short-range attraction on Jamming transition
Zhenhuan Xu(徐震寰), Rui Wang(王瑞), Jiamei Cui(崔佳梅), Yanjun Liu(刘彦君), and Wen Zheng(郑文). Chin. Phys. B, 2021, 30(6): 066101.
[8] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[9] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[10] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[11] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[12] Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids
Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁). Chin. Phys. B, 2020, 29(12): 126302.
[13] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[14] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[15] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
No Suggested Reading articles found!