Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090508    DOI: 10.1088/1674-1056/21/9/090508
GENERAL Prev   Next  

Projective synchronization of hyperchaotic system via periodically intermittent control

Huang Jun-Jian (黄军建)a b, Li Chuan-Dong (李传东)a, Zhang Wei (张伟)b, Wei Peng-Cheng (韦鹏程)a b
a College of Computer, Chongqing University, Chongqing 400030, China;
b Department of Computer Science, Chongqing Education College, Chongqing 400067, China
Abstract  We further study the projective synchronization of a new hyperchaotic system. Different from the most existing methods, intermittent control is applied to chaotic synchronization in the present paper. We formulate the intermittent control system that governs the dynamics of the projective synchronization error, then derive the sufficient conditions for the exponential stability of intermittent control system by using Lyapunov stability theory, and finally establish the periodically intermittent controller according to the stability criterion by which the projective synchronization is expected to be achieved. The analytical results are also demonstrated by several numerical simulations.
Keywords:  intermittent control      hyperchaotic system      projective synchronization  
Received:  15 February 2012      Revised:  11 March 2012      Accepted manuscript online: 
PACS:  05.45.Jn (High-dimensional chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60974020), the Natural Science Foundation of Chongqing, China (Grant No. cstc2011jjA0980), and the Foundation of Chongqing Education College, China (Grant Nos. KY201112A, KY201113B, and KY201122C ).
Corresponding Authors:  Huang Jun-Jian     E-mail:  hmomu@sina.com

Cite this article: 

Huang Jun-Jian (黄军建), Li Chuan-Dong (李传东), Zhang Wei (张伟), Wei Peng-Cheng (韦鹏程) Projective synchronization of hyperchaotic system via periodically intermittent control 2012 Chin. Phys. B 21 090508

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2374
[3] Rulkov N F, Sushchik M M and Tsimring L S 1995 Phys. Rev. E 51 980
[4] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[5] Abdurahman K, Wang X Y and Zhao Y 2011 Acta Phys. Sin. 60 81 (in Chinese)
[6] Wang X Y and Zhang Y L 2011 Chin. Phys. B 20 100506
[7] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[8] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[9] Masoller C and Zanette D H 2001 Physica A 300 359
[10] L F C, Li J Y and Zang X F 2011 Acta Phys. Sin. 60 108 (in Chinese)
[11] Hu G, Pivka L and Zheleznyak A L 1995 IEEE Trans. Circuits. Syst. 42 736
[12] Jiang G P, Chen G R and Tang W K 2003 Int. J. Bifurcat. Chaos 13 2343
[13] Huang D B 2005 Phys. Rev. E 71 037203
[14] Millerioux G and Daafouz J 2003 IEEE Trans. Circuits. Syst. 50 1270
[15] Liu Y Z, Lin C S and Wang Z L 2010 Acta Phys. Sin. 59 8407 (in Chinese)
[16] Yang T and Chua L O 1997 IEEE Trans. Circuits. Syst. 44 976
[17] Luo Y J, Yu Q and Zhang W D 2011 Acta Phys. Sin. 60 110504 (in Chinese)
[18] Li Z G,Wen C Y, Soh Y C and Xie W H 2001 IEEE Trans. Circuits. Syst. 48 1351
[19] Stojanovski T, Kocarev L and Parlitz U 1996 Phys. Rev. E 54 2128
[20] Chen J, Liu H, Lu J A and Zhang Q J 2010 Commun. Nonlinear Sci. Numer. Simlat. 16 2033
[21] Huang T W, Li C D, Yu W W and Chen G R 2009 Nonlinearity 22 569
[22] Li C D, Liao X F and Huang T W 2007 Chaos 170 13103
[23] Li C D, Feng G, and Liao X F 2007 IEEE. Trans. Circuits. Syst. 54 1019
[24] Zochowski M 2000 Physica D 145 181
[25] Huang T W, Li C D and Liu X Z 2008 Chaos 18 033122
[26] Liu X W and Chen T P 2011 IEEE Trans. Neural. Net. 22 1009
[27] Yang Q, Zhang K and Chen G 2009 Nonlinear Anal.: Real World Appl. 10 1601
[1] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[2] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[3] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[4] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[5] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[6] Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions
Adel Ouannas, Giuseppe Grassi. Chin. Phys. B, 2016, 25(9): 090503.
[7] A novel methodology for constructing a multi-wing chaotic and hyperchaotic system with a unified step function switching control
Chao-Xia Zhang(张朝霞), Si-Min Yu(禹思敏). Chin. Phys. B, 2016, 25(5): 050503.
[8] A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Yang Lu(路杨), Miao-Hui Zhang(张苗辉), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2016, 25(10): 100503.
[9] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[10] Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance
Wang Shu-Guo (王树国), Zheng Song (郑松). Chin. Phys. B, 2013, 22(7): 070503.
[11] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan (李科赞), He En (何恩), Zeng Zhao-Rong (曾朝蓉), Chi K. Tse (谢智刚). Chin. Phys. B, 2013, 22(7): 070504.
[12] A fractional order hyperchaotic system derived from Liu system and its circuit realization
Han Qiang (韩强), Liu Chong-Xin (刘崇新), Sun Lei (孙蕾), Zhu Da-Rui (朱大锐). Chin. Phys. B, 2013, 22(2): 020502.
[13] Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos
Zhang Fang-Fang (张芳芳), Liu Shu-Tang (刘树堂), Yu Wei-Yong (余卫勇). Chin. Phys. B, 2013, 22(12): 120505.
[14] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕). Chin. Phys. B, 2013, 22(10): 100504.
[15] Controlling and synchronization of a hyperchaotic system based on passive control
Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男). Chin. Phys. B, 2012, 21(9): 090509.
No Suggested Reading articles found!