Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090509    DOI: 10.1088/1674-1056/21/9/090509
GENERAL Prev   Next  

Controlling and synchronization of a hyperchaotic system based on passive control

Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男)
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In this paper, a new hyperchaotic system is proposed, and the basic properties of this system are analyzed by means of equilibrium point, Poincaré map, bifurcation diagram, and Lyapunov exponents. Based on the passivity theory, the controllers are designed to achieve the new hyperchaotic system globally, asymptotically stabilized at the equilibrium point, and also realize the synchronization between the two hyperchaotic systems under different initial values respectively. Finally, the numerical simulation results show that the proposed control and synchronization schemes are effective.
Keywords:  hyperchaotic system      bifurcation diagram      Lyapunov exponent      passivity theory  
Received:  16 February 2012      Revised:  15 March 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201110023).
Corresponding Authors:  Zhu Da-Rui     E-mail:  zdarui@163.com

Cite this article: 

Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男) Controlling and synchronization of a hyperchaotic system based on passive control 2012 Chin. Phys. B 21 090509

[1] Rössler O E 1979 Phys. Lett. A 71 155
[2] Ott E, Grebogi C and James A Y 1990 Phys. Rev. Lett. 64 1196
[3] Hegazi A S, Agiza H N and Dessoky M M 2002 Int. J. Bifurc. Chaos 12 1579
[4] Yu X H 1997 Chaos Soliton. Fract. 8 1577
[5] Yang T, Li X F and Shao H H 2001 Proceedings of the American Control Conference June 25-27, 2001 Arlington, VA, p. 2299
[6] Liao X X and Chen G R 2003 Int. J. Bifurc. Chaos 13 207
[7] Konishi K, Hirai M and Kokame H 1998 Phys. Lett. A 245 511
[8] Xue Y J and Yang S Y 2003 Chaos Soliton. Fract. 17 717
[9] Yassen M T 2003 Appl. Math. Comput. 135 113
[10] Zhang H, Ma X K, Yang Y and Xu C D 2005 Chin. Phys. 14 86
[11] Zhang H, Ma X K, Li M and Zou J L 2005 Chaos Soliton. Fract. 26 353
[12] Byrnes C I, Isidori A and Willems J C 1991 IEEE Trans. Automat. Contr. 36 1228
[13] Yu W 1999 IEEE Trans. CAS I 46 876
[14] Sangper T and Kuntanapreeda S 2010 Int. J. Bifurc. Chaos 20 1519
[15] Wang F Q and Liu C X 2006 Chin. Phys. 15 1971
[16] Liu C X, Liu T, Liu L and Liu K 2004 Chaos Soliton. Fract. 22 1031
[17] Liu C X 2007 Chin. Phys. 16 3279
[18] Hill D and Moylan P 1976 IEEE Trans. Automat. Contr. 21 708
[1] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[2] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[3] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[4] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[5] Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise
You-Ming Lei(雷佑铭), Hong-Xia Zhang(张红霞). Chin. Phys. B, 2017, 26(3): 030502.
[6] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[7] A novel methodology for constructing a multi-wing chaotic and hyperchaotic system with a unified step function switching control
Chao-Xia Zhang(张朝霞), Si-Min Yu(禹思敏). Chin. Phys. B, 2016, 25(5): 050503.
[8] A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Yang Lu(路杨), Miao-Hui Zhang(张苗辉), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2016, 25(10): 100503.
[9] A study of the early warning signals of abrupt change in the Pacific decadal oscillation
Wu Hao (吴浩), Hou Wei (侯威), Yan Peng-Cheng (颜鹏程), Zhang Zhi-Sen (张志森), Wang Kuo (王阔). Chin. Phys. B, 2015, 24(8): 089201.
[10] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[11] A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection
Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰). Chin. Phys. B, 2015, 24(6): 060504.
[12] A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors
Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small. Chin. Phys. B, 2015, 24(6): 060507.
[13] Bifurcation behavior and coexisting motions in a time-delayed power system
Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红). Chin. Phys. B, 2015, 24(3): 030501.
[14] A perturbation method to the tent map based on Lyapunov exponent and its application
Cao Lv-Chen (曹绿晨), Luo Yu-Ling (罗玉玲), Qiu Sen-Hui (丘森辉), Liu Jun-Xiu (刘俊秀). Chin. Phys. B, 2015, 24(10): 100501.
[15] Effect of metal oxide arrester on the chaotic oscillations in the voltage transformer with nonlinear core loss model using chaos theory
Hamid Reza Abbasi, Ahmad Gholami, Seyyed Hamid Fathi, Ataollah Abbasi. Chin. Phys. B, 2014, 23(1): 018201.
No Suggested Reading articles found!