Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 078702    DOI: 10.1088/1674-1056/21/7/078702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

Qin Ying-Mei(秦迎梅), Wang Jiang(王江), Men Cong(门聪), Zhao Jia(赵佳), Wei Xi-Le(魏熙乐), and Deng Bin(邓斌)
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300222, China
Abstract  Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the external stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.
Keywords:  spike-timing-dependent plasticity (STDP)      weak electrical field      rhythmic activity  
Received:  11 January 2012      Revised:  09 February 2012      Accepted manuscript online: 
PACS:  87.19.L- (Neuroscience)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61072012, 60901035, 50907044, and 61172009).
Corresponding Authors:  Wang Jiang     E-mail:  jiangwang@tju.edu.cn

Cite this article: 

Qin Ying-Mei(秦迎梅), Wang Jiang(王江), Men Cong(门聪), Zhao Jia(赵佳), Wei Xi-Le(魏熙乐), and Deng Bin(邓斌) Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields 2012 Chin. Phys. B 21 078702

[1] Gilson M, Burkitt A N, Grayden D B, Thomas D A and van Hemmen J L 2009 Biol. Cybern. 101 81
[2] Scarpetta S, de Candia A and Giacco F 2010 Frontiers in Synaptic Neuroscience 2 32
[3] Siegel M, Warden M R and Miller E K 2009 Proceedings of the National Academy of Sciences of the United States of America 106 21341
[4] Markram H, Gerstner W and Sjostrom P J 2011 Frontiers in Synaptic Neuroscience 3 4
[5] Gilson M, Burkitt A N, Grayden D B, Thomas D A and van Hemmen J L 2009 Biol. Cybern. 101 103
[6] Leibold C, Kempter R and van Hemmen J L 2002 Phys. Rev. E 65 051915
[7] Burkitt A N, Meffin H and Grayden D B 2004 Neural Comput. 16 885
[8] Meffin H, Besson J, Burkitt A N and Grayden D B 2006 Phys. Rev. E 73 041911
[9] Mehta M R, Lee A K and Wilson M A 2002 Nature 417 741
[10] Scarpetta S and Marinaro M 2005 Hippocampus 15 979
[11] Froemke R C, Debanne D and Bi G Q 2010 Frontiers in Synaptic Neuroscience 2 19
[12] Froemke R C and Dan Y 2002 Nature 416 433
[13] Wang H X, Gerkin R C, Nauen D W and Bi G Q 2005 Nat. Neurosci. 8 187
[14] Gerstner W, Kempter R, van Hemmen J L and Wagner H 1996 Nature 383 76
[15] Song S, Miller K D and Abbott L F 2000 Nat. Neurosci. 3 919
[16] Lengyel M, Kwag J, Paulsen O and Dayan P 2005 Nat. Neurosci. 8 1677
[17] Li L, Jin Z L and Li B 2011 Chin. Phys. B 20 038701
[18] Laing C R and Longtin A 2003 Phys. Rev. E 67 051928
[19] Yang Z Q and Lu Q S 2006 Chin. Phys. B 15 518
[20] Gao Z Y and Lu Q S 2007 Chin. Phys. B 16 2479
[21] Men C, Wang J, Qin Y M, Wei X L, Che Y Q and Deng B 2011 Chin. Phys. B 20 128704
[22] Fregni F, Boggio P S, Lima M C, Ferreira M J, Wagner T, Rigonatti S P, Castro A W, Souza D R, Riberto M, Freedman S D, Nitsche M A and Pascual-Leone A 2006 Pain 122 197
[23] Liebetanz D, Klinker F, Hering D, Koch R, Nitsche M A, Potschka H, Loscher W, Paulus W and Tergau F 2006 Epilepsia 47 1216
[24] Kirov R, Weiss C, Siebner H R, Born J and Marshall L 2009 Proceedings of the National Academy of Sciences 106 15460
[25] Pogosyan A, Gaynor L D, Eusebio A and Brown P 2009 Current Biology 19 1637
[26] Bikson M, Inoue M, Akiyama H, Deans J K, Fox J E, Miyakawa H and Jefferys J G R 2004 The Journal of Physiology 557 175
[27] Parra L C and Bikson M 2004 Conf. Proc. IEEE Eng. Med. Biol. Soc. 6 4584
[28] Reato D, Rahman A, Bikson M and Parra L C 2010 J. Neurosci. 30 15067
[29] Fröhlich F and McCormick D A 2010 Neuron 67 129
[30] Jefferys J G 1995 Physiol. Rev. 75 689
[31] Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569
[32] Izhikevich E M Gally J A and Edelman G M 2004 Cereb. Cortex 14 933
[33] Izhikevich E M 2006 Neural Comput. 18 245
[1] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[2] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[5] Computational model investigating the effect of magnetic field on neural-astrocyte microcircuit
Li-Cong Li(李利聪), Jin Zhou(周瑾), Hong-Ji Sun(孙洪吉), Peng Xiong(熊鹏), Hong-Rui Wang(王洪瑞), Xiu-Ling Liu(刘秀玲), and Chang-Yong Wang(王常勇). Chin. Phys. B, 2021, 30(6): 068702.
[6] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[7] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[8] Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation
Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 030504.
[9] Astrocyte and ions metabolism during epileptogenesis: A review for modeling studies
Meng-Meng Du(独盟盟), Jia-Jia Li(李佳佳), Zhi-Xuan Yuan(袁治轩), Yong-Chen Fan(范永晨), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 038701.
[10] Individual identification using multi-metric of DTI in Alzheimer's disease and mild cognitive impairment
Ying-Teng Zhang(张应腾), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(8): 088702.
[11] Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh–Rose neuron model
Jia Bing (贾冰). Chin. Phys. B, 2014, 23(3): 030505.
[12] Studies of phase return map and symbolic dynamics in a periodically driven Hodgkin–Huxley neuron
Ding Jiong (丁炯), Zhang Hong (张宏), Tong Qin-Ye (童勤业), Chen Zhuo (陈琢). Chin. Phys. B, 2014, 23(2): 020501.
[13] Bifurcation diagram globally underpinning neuronal firing behaviors modified by SK conductance
Chen Meng-Jiao (陈梦娇), Ling Heng-Li (令恒莉), Liu Yi-Hui (刘一辉), Qu Shi-Xian (屈世显), Ren Wei (任维). Chin. Phys. B, 2014, 23(2): 028701.
[14] Erratum to “Coherence resonance in globally coupled neuronal networks with different neuron numbers”
Ning Wei-Lian (宁维莲), Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Luo Xiao-Shu (罗晓曙), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾绍稳), Qiu Yi (邱怡), Wu Hui-Si (吴慧思). Chin. Phys. B, 2013, 22(1): 018702.
[15] Spiking sychronization regulated by noise in three types of Hodgkin–Huxley neuronal networks
Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Tang Wen-Yan (唐文艳), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾紹稳), Ning Wei-Lian (宁维莲), Qiu Yi (邱怡), Wu Hui-Si (吴慧思). Chin. Phys. B, 2012, 21(10): 108701.
No Suggested Reading articles found!