Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054205    DOI: 10.1088/1674-1056/21/5/054205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-wavelength laser active coherent combination

Han Kai(韩凯), Xu Xiao-Jun(许晓军), and Liu Ze-Jin(刘泽金)
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  A seed laser oscillating at different frequencies is proved to have the potential to mitigate the stimulated Brillouin scattering (SBS) effect in a fiber amplifier, which may increase the emission power of a coherent beam combination (CBC) system greatly. In this study, a basic mathematical model describing the multi-wavelength CBC is proposed on the fundamentals of CBC. A useful method for estimating the combination effect and analysing the feasibility and the validity of the multi-wavelength coherent combination is provided. In the numerical analysis, accordant results with four-wavelength four-channel CBC experiments are obtained. Through calculations of some examples with certain spectra, the unanticipated excellent combination effect with a few frequencies involved is explained, and the dependence of the combination effect on the variance of the amplifier chain length and the channel number is clarified.
Keywords:  fiber laser      coherent beam combination      multi-wavelength laser      optical path difference  
Received:  23 August 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.25.Kb (Coherence)  
  42.62.-b (Laser applications)  
  42.55.Wd (Fiber lasers)  
Fund: Project supported by the Innovation Foundation for Postgraduates in the National University of Defense Technology, China (Grant No. S090701).

Cite this article: 

Han Kai(韩凯), Xu Xiao-Jun(许晓军), and Liu Ze-Jin(刘泽金) Multi-wavelength laser active coherent combination 2012 Chin. Phys. B 21 054205

[1] Augst S J, Fan T Y and Sanchez A 2004 Opt. Lett. 29 474
[2] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567
[3] Xue Y H, He B, Zhou J, Li Z, Fan Y Y, Qi Y F, Yuan Z J, Zhang H B and Lou Q H 2011 Chin. Phys. Lett. 5 054212
[4] He B, Lou Q H, Zhou J, Zheng Y H, Xue D, Dong J X,Wei Y R, Zhang F P, Qi Y F, Zhu J Q, Li J Y, Li S Y and Wang Z J 2007 Chin. Opt. Lett. 5 412
[5] He B, Lou Q H, Zhou J, Dong J X, Wei Y R, Xue D, Qi Y F, Su Z P, Li L B and Zhang F P 2006 Opt. Express 14 2721
[6] Fu S Y, Tian Z S, Shi X L and Sun Z H 2008 Chin. Phys. B 2 0628
[7] Jia X J, Liu F N, Fu S G, Liu Y G, Yuan S Z and Dong X Y 2008 Chin. Phys. B 10 2993
[8] Hecht E 2005 Optics (4th Edn.) (Beijing:Higher Education Press) p. 122
[9] Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R and Tiinnermann A 2007 IEEE J. Sel. Top. Quantum Electron. 13 537
[10] Dajani I, Zeringue C, Bronder T J, Shay T, Gavrielides A and Robin C 2008 Opt. Express 16 14233
[11] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W and Barty C P J 2008 Opt. Express 16 1324
[12] Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2009 Opt. Lett. 34 2939
[13] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Chin. Phys. B 19 094202
[14] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Chin. Phys. Lett. 27 124201
[15] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Journal of Optics 12 75701
[16] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Acta Phys. Sin. 59 5474 (in Chinese)
[17] Han K, Xu X J, Zhou P, Ma Y X, Wang X L and Liu Z J 2011 Acta Phys. Sin. 60 074206 (in Chinese)
[18] Carhart G W, Ricklin J C, Sivokon V P and Vorontsov M A 1997 Proc. SPIE 3126 221
[19] Vorontsov M A and Sivokon V P 1998 J. Opt. Soc. Am. A 15 2745
[20] Zhou P, Liu Z J, Xu X J and Chen Z L 2008 Appl. Opt. 47 3350
[21] Zhou P, Liu Z J, Xu X J, Chen Z L and Wang X L 2009 Opt. Laser Technol. 41 268
[22] Stickley C M 2007 http://www.darpa.mil/mto/programs/adhels/index.htm
[23] Burnett J G and Jones J D C 1992 Appl. Opt. 31 2977
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[5] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[6] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[7] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[8] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[9] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[10] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[11] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[12] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[13] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[14] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!