Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 033102    DOI: 10.1088/1674-1056/21/3/033102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The effect of polymer type on electric breakdown strength on a nanosecond time scale

Zhao Liang(赵亮)a)b), Su Jian-Cang(苏建仓)b), Pan Ya-Feng(潘亚峰)b), and Zhang Xi-Bo(张喜波)b)
a. Key laboratory of Physical Electronics and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
b. Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  Based on the concepts of fast polarization, effective electric field and electron impact ionization criterion, the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated, and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived. According to this formula, it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers. By calculating the effective relative dielectric constants for different types of polymers, the theoretical relation for the electric breakdown strengths of common polymers is predicted. To verify the prediction, the polymers of PE (polyethylene), PTFE (polytetrafluoroethelene), PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator. The experimental result shows EBD (PTFE) > EBD (PMMA) > EBD (Nylon) > EBD (PE). This result is consistent with the theoretical prediction.
Keywords:  electric breakdown strength      polymer type      nanosecond time scale      fast polarization phenomenon  
Received:  28 July 2011      Revised:  11 November 2011      Accepted manuscript online: 
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  32.10.Hq (Ionization potentials, electron affinities)  
  77.22.Ej (Polarization and depolarization)  
  11.10.-z (Field theory)  
Corresponding Authors:  Zhao Liang,zhaoliang0526@163.com     E-mail:  zhaoliang0526@163.com

Cite this article: 

Zhao Liang(赵亮), Su Jian-Cang(苏建仓), Pan Ya-Feng(潘亚峰), and Zhang Xi-Bo(张喜波) The effect of polymer type on electric breakdown strength on a nanosecond time scale 2012 Chin. Phys. B 21 033102

[1] Zou J H, Tao H, Wu H B and Peng J B 2009 Acta Phys. Sin. 58 3898 (in Chinese)
[2] Zou J H, Lan L F, Xu R X, Yang W and Peng J B 2010 Acta Phys. Sin. 59 1275 (in Chinese)
[3] Wang B Z, Zhang A Q, Wu H B, Yang W and Wen S S 2010 Acta Phys. Sin. 59 4240 (in Chinese)
[4] Shao T, Long K H, Zhang C, Wang J, Zhang D D and Yan P 2010 Chin. Phys. B 19 04061
[5] Liu G Z, Liu J Y, Huang W H, Zhou J S, Song X X and Ning H 2000 Chin. Phys. 9 757
[6] Zhao L, Peng J C, Pan Y F, Zhang X B and Su J C 2010 IEEE Trans. Plasma Sci. 38 1369
[7] Chang C, Fang J Y, Zhang Z Q, Chen C H, Tang C X and Jin Q L 2010 Appl. Phys. Lett. 97 141501
[8] Martin J C 1992 Proc. IEEE. 80 934
[9] Martin J C 1996 Pulsed Power (NewYork: Plenum) pp. 227-234
[10] Mesyats G A 2005 Pulsed Power (Acdamic: New York) pp. 119-120
[11] Zhang J Z 1994 Breakdown of Solid Dielectrics (Hangzhou: Hangzhou University Press) pp. 9, 10 (in Chinese)
[12] Treanor M, Laghari J R and Hyder A K 1987 IEEE Trans. Elect. Insul. EI-22 517
[13] Zhao L, Su J C, Pan Y F and Zhang X B 2011 IEEE Trans. Plasma Sci. 39 1613
[14] Cao K C 2004 Dielectric Phenomenon in Solid (New York: Elsevier Academic Press) pp. 50-89
[15] Dakin T W 2006 IEEE Electr. Insul. Mag. 22 11
[16] Zhu X L, Ma X W, Li B, Feng W T, Zhang S F, Liu H P, Qian D B and Zhang D C 2010 Acta Phys. Sin. 59 620 (in Chinese)
[17] Feng W T, Ma X W, Zhu X L, Zhang S F, Qian D B, Li B, Yang S C and Zhang P J 2010 Acta Phys. Sin. 59 2016 (in Chinese)
[18] Li H R 1990 Introduction for Dielectrics (Chengdu: Chengdu Electronics Science and Technology University Press) pp. 15-69 (in Chinese)
[19] Mesyats G A, Korovin S D and Rostov V V 2004 Proc. IEEE 1166
[20] Mesyats G A, Shpak V G, Yalandin M I and Shunailov S A Proc.10th IEEE Int. Pulsed Power Conf. Albuquerque, New Mexico, 1995 p. 539
[21] Korovin S D, Gubanov V P, Gunin A V, Peget I V and Stepchenko A S 2001 Proc. 13th IEEE Int. Pulsed Power Conf. Las Vegas, Nv, p. 1249
[22] Mason J H 1991 IEEE Trans. Elect. Insul. 26 318
[23] Whitehead S 1951 Dielectric Breakdown of Solid (Oxford: Clarendon Press) pp. 5-115
[1] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[2] Attosecond spectroscopy for filming the ultrafast movies of atoms, molecules and solids
Lixin He(何立新), Xiaosong Zhu(祝晓松), Wei Cao(曹伟), Pengfei Lan(兰鹏飞), and Peixiang Lu(陆培祥). Chin. Phys. B, 2022, 31(12): 123301.
[3] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[4] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[5] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[6] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[7] Influence of external load on friction coefficient of Fe-polytetrafluoroethylene
Xiu-Hong Hao(郝秀红), Deng Pan(潘登), Ze-Yang Zhang(张泽洋), Shu-Qiang Wang(王树强), Yu-Jin Gao(高玉金), Da-Peng Gu(谷大鹏). Chin. Phys. B, 2020, 29(4): 046802.
[8] A computational study of the chemokine receptor CXCR1 bound with interleukin-8
Yang Wang(王洋), Cecylia Severin Lupala, Ting Wang(王亭), Xuanxuan Li(李选选), Ji-Hye Yun, Jae-hyun Park, Zeyu Jin(金泽宇), Weontae Lee, Leihan Tan(汤雷翰), Haiguang Liu(刘海广). Chin. Phys. B, 2018, 27(3): 038702.
[9] Control water molecules across carbon-based nanochannels
Xianwen Meng(孟现文), Jiping Huang(黄吉平). Chin. Phys. B, 2018, 27(1): 013101.
[10] Anisotropic self-diffusion of fluorinated poly(methacrylate) in metal-organic frameworks assessed with molecular dynamics simulation
Tao Lu(鲁桃), Biao Xu(徐彪), Fei-Hong Ye(叶飞宏), Xin-Hui Zhou(周馨慧), Yun-Qing Lu(陆云清), Jin Wang(王瑾). Chin. Phys. B, 2017, 26(12): 123104.
[11] Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study
H F Gong(龚恒风), Y Yan(严岩), X S Zhang(张显生), W Lv(吕伟), T Liu(刘彤), Q S Ren(任啟森). Chin. Phys. B, 2017, 26(9): 093104.
[12] Molecular dynamics simulation of the response of bi-disperse polyelectrolyte brushes to external electric fields
Fen Zhang(张芬), Huan-Da Ding(丁欢达), Chao Duan(段超), Shuang-Liang Zhao(赵双良), Chao-Hui Tong(童朝晖). Chin. Phys. B, 2017, 26(8): 088204.
[13] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[14] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[15] The inelastic electron tunneling spectroscopy of edge-modified graphene nanoribbon-based molecular devices
Zong-Ling Ding(丁宗玲), Zhao-Qi Sun(孙兆奇), Jin Sun(孙进), Guang Li(李广), Fan-Ming Meng(孟凡明), Ming-Zai Wu(吴明在), Yong-Qing Ma(马永青), Long-Jiu Cheng(程龙玖), Xiao-Shuang Chen(陈效双). Chin. Phys. B, 2017, 26(2): 023103.
No Suggested Reading articles found!