|
|
Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study |
H F Gong(龚恒风)1,2,3,4, Y Yan(严岩)1, X S Zhang(张显生)1, W Lv(吕伟)4, T Liu(刘彤)1, Q S Ren(任啟森)1 |
1 ATF R&D, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen 518000, China; 2 Shanghai Institute of Applied Physics, Division of Nuclear Materials and Engineering, Chinese Academy of Sciences, Shanghai 201800, China; 3 Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China; 4 Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA |
|
|
Abstract We investigated the effect of grain boundary structures on the trapping strength of HeN (N is the number of helium atoms) defects in the grain boundaries of nickel. The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane. The HeN defect is much more stable in nickel bulk than in the grain boundary plane. Besides, the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane. The binding strength between the grain boundary and the HeN defect increases with the defect size. Moreover, the binding strength of the HeN defect to the Σ3(112)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.
|
Received: 23 March 2017
Revised: 23 May 2017
Accepted manuscript online:
|
PACS:
|
31.15.at
|
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
|
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
31.30.jf
|
(QED calculations of level energies, transition frequencies, fine structure intervals (radiative corrections, self-energy, vacuum polarization, etc.))
|
|
Fund: Project supported by the Program of International S&T Cooperation, China (Grant No. 2014DFG60230), the National Basic Research Program of China (Grant No. 2010CB934504), Strategically Leading Program of the Chinese Academy of Sciences (Grant No. XDA02040100), the Shanghai Municipal Science and Technology Commission, China (Grant No. 13ZR1448000), the National Natural Science Foundation of China (Grant Nos. 91326105 and 21306220). |
Corresponding Authors:
H F Gong
E-mail: gonghengfeng@cgnpc.com.cn
|
Cite this article:
H F Gong(龚恒风), Y Yan(严岩), X S Zhang(张显生), W Lv(吕伟), T Liu(刘彤), Q S Ren(任啟森) Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study 2017 Chin. Phys. B 26 093104
|
[1] |
Zinkle S J 2005 Phys. Plasmas 12 058101
|
[2] |
Ishiyama Y, Kodama M, Yokota N, Asano K, Kato T and Fukuya K 1996 J. Nucl. Mater. 239 90
|
[3] |
Stoller R E and Odette G R 1988 J. Nucl. Mater. 155 1328
|
[4] |
Lewis M B and Farrell K 1986 Nucl. Instrum. Methods Phys. Res. B 16 163
|
[5] |
Bloom E E, Busby J T, Duty C E, Maziasz P J, McGreevy T E, Nelson B E, Pint B A, Tortorelli P F and Zinkle S J 2007 J. Nucl. Mater. 367 1
|
[6] |
Zinkle S J and Busby J T 2009 Mater. Today 12 12
|
[7] |
Yamamoto T, Odette G R and Kishimoto H 2006 J. Nucl. Mater. 356 27
|
[8] |
Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
|
[9] |
Johnson P B and Mazey D J 1978 Nature 276 595
|
[10] |
Trinkaus H and Singh B N 2003 J. Nucl. Mater. 318 234
|
[11] |
Zinkle S J and Busby J T 2009 J. Nucl. Mater. 386 8
|
[12] |
Trinkaus H 1983 Radiation Effects 78 189
|
[13] |
Kalashnikov A N, Chernov I I, Kalin B A and Binyukova S Y 2002 J. Nucl. Mater. 307 362
|
[14] |
Edmondson P D, Parish C M, Zhang Y and Hallén A 2011 Scripta Mater. 65 731
|
[15] |
Lane P L and Goodhew P J 1983 Philos. Mag. A 48 965
|
[16] |
Lefaix-jeuland H, Moll S, Jourdan T and Legendre F 2013 J. Nucl. Mater. 434 152
|
[17] |
Tschopp M A and McDowell D L 2007 Philos. Mag. 87 3147
|
[18] |
Baskes M I and Vitek V 1985 Metall. Trans. A 16 1625
|
[19] |
Yamaguchi M, Nishiyama Y and Kaburaki H 2007 Phys. Rev. B. 76 0355418
|
[20] |
Wachowicz E and Kiejna A 2011 Modell. Simul. Mater. Sci. Eng. 9 025001
|
[21] |
Rhodes N R, Tschopp M A and Solanki K N 2013 Modell. Simul. Mater. Sci. Eng. 21 035009
|
[22] |
Kurtz R J and Heinisch H L 2004 J. Nucl. Mater. 329 1199
|
[23] |
Gao F, Heinisch H L and Kurtz R J 2006 J. Nucl. Mater. 351 133
|
[24] |
Kurtz R J, Heinisch H L and Gao F 2008 J. Nucl. Mater. 382 134
|
[25] |
Gao F, Heinisch H L and Kurtz R J 2009 J. Nucl. Mater. 386 390
|
[26] |
Zhang L, Shu X L, Jin S, Zhang Y and Lu G H 2010 J. Phys.: Condens. Matter 22 375401
|
[27] |
Zhang L, Fu C C and Lu G H 2013 Phys. Rev. B 87 134107
|
[28] |
Tschopp M A, Gao F, Yang L and Solanki K N 2014 J. Appl. Phys. 115 1
|
[29] |
Xia J X, Hu W Y, Yang J Y and Ao B Y 2006 Phys. Stat. Soli. B 243 1
|
[30] |
Terentyev D and He X 2010 Comput. Mater. Sci. 49 858
|
[31] |
Hafez H S Z, Lucas G and Schäublin R 2009 Europhys. Lett. 85 6008
|
[32] |
Demkowicz M J, Bhattacharyya D, Usov I, Wang Y Q, Nastasi M and Misra A 2010 Appl. Phys. Lett. 97 161903
|
[33] |
Zhang Y F, Millett P C, Tonks M and Zhang L Z 2012 J. Phys.: Condens. Matter 24 305005
|
[34] |
Zhang L, Zhang Y and Lu G H 2013 J. Phys.: Condens. Matter 25 095001
|
[35] |
Hammond K D, Hu L, Maroudas D and Wirth B D 2015 Europhys. Lett. 110 52002
|
[36] |
Kashinath A, Misra A and Demkowicz M J 2013 Phys. Rev. Lett. 110 086101
|
[37] |
http://lammps.sandia.gov/
|
[38] |
Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
|
[39] |
Baskes M I 1992 Phys. Rev. B 46 2727
|
[40] |
Ouyang Y, Zhang B, Liao S and Jin Z 1996 Phys. B 101 161
|
[41] |
Deng H, Hu W, Shu X and Zhang B 2003 Surf. Sci. 543 97
|
[42] |
Yang J, Hu W, Deng H and Zhao D 2004 Surf. Sci. 572 2074
|
[43] |
Hu W, Zhang B, Huang B, Gao F and Bacon D J 2001 J. Phys.: Conden. Matter 13 1193
|
[44] |
Hu W, Deng H, Yuan X and Fukumoto M 2003 Euro. Phys. J. B 34 429
|
[45] |
Hu W, Shu X and Zhang B 2002 Comput. Mater. Sci. 23 175
|
[46] |
Hu W and Fukumoto M 2002 Modell. Simula. Mater. Sci. 10 707
|
[47] |
Johnson R A 1990 Phys. Rev. B 41 9717
|
[48] |
Baskes M I and Melius C F 1979 Phys. Rev. B 20 3197
|
[49] |
Johnson R A 1973 J. Phys. F: Metal Phys. 3 295
|
[50] |
Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1
|
[51] |
https://staff.aist.go.jp/h.ogawa/GBstudio/indexE.html
|
[52] |
Beladi H and Rohrer G S 2013 Acta Mater. 61 1404
|
[53] |
Beladi H and Tphrer G S 2013 Metall. Mater.Trans. A 44 115
|
[54] |
Tschopp M A, Gao F and Solanki K N 2014 J. Appl. Phys. 115 1
|
[55] |
Bulatov V V, Reed B W and Kumar M 2014 Acta Mater. 65 161
|
[56] |
Mizuno T, Asato M, Hoshino T and Kawakami K 2001 J. Magn. Magn. Mater. 226 386
|
[57] |
Baskes M I and Melius C F 1981 Phys. Rev. B 20 3197
|
[58] |
Demkowicz M J, Anderoglu O, Zhang X and Misra A 2011 J. Mater. Res. 26 1666
|
[59] |
Bai X M, Vernon L J, Hoagland R G, Voter A F, Nastasi M and Uberuaga B P 2012 Phys. Rev. B 85 214103
|
[60] |
Tschopp M A, Solanki K N, Gao F, Sun X, Khaleel M A and Horstemeyer M F 2012 Phy. Rev. B 85 064108
|
[61] |
Ryazanov A, Voskoboinikov R E and Trinkaus H 1996 J. Nucl. Mater. 1085 233
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|