Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 093104    DOI: 10.1088/1674-1056/26/9/093104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study

H F Gong(龚恒风)1,2,3,4, Y Yan(严岩)1, X S Zhang(张显生)1, W Lv(吕伟)4, T Liu(刘彤)1, Q S Ren(任啟森)1
1 ATF R&D, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen 518000, China;
2 Shanghai Institute of Applied Physics, Division of Nuclear Materials and Engineering, Chinese Academy of Sciences, Shanghai 201800, China;
3 Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China;
4 Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Abstract  We investigated the effect of grain boundary structures on the trapping strength of HeN (N is the number of helium atoms) defects in the grain boundaries of nickel. The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane. The HeN defect is much more stable in nickel bulk than in the grain boundary plane. Besides, the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane. The binding strength between the grain boundary and the HeN defect increases with the defect size. Moreover, the binding strength of the HeN defect to the Σ3(112)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.
Keywords:  molecular dynamics      trapping strength      helium defect      grain boundary  
Received:  23 March 2017      Revised:  23 May 2017      Accepted manuscript online: 
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  33.15.Fm (Bond strengths, dissociation energies)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  31.30.jf (QED calculations of level energies, transition frequencies, fine structure intervals (radiative corrections, self-energy, vacuum polarization, etc.))  
Fund: Project supported by the Program of International S&T Cooperation, China (Grant No. 2014DFG60230), the National Basic Research Program of China (Grant No. 2010CB934504), Strategically Leading Program of the Chinese Academy of Sciences (Grant No. XDA02040100), the Shanghai Municipal Science and Technology Commission, China (Grant No. 13ZR1448000), the National Natural Science Foundation of China (Grant Nos. 91326105 and 21306220).
Corresponding Authors:  H F Gong     E-mail:  gonghengfeng@cgnpc.com.cn

Cite this article: 

H F Gong(龚恒风), Y Yan(严岩), X S Zhang(张显生), W Lv(吕伟), T Liu(刘彤), Q S Ren(任啟森) Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study 2017 Chin. Phys. B 26 093104

[1] Zinkle S J 2005 Phys. Plasmas 12 058101
[2] Ishiyama Y, Kodama M, Yokota N, Asano K, Kato T and Fukuya K 1996 J. Nucl. Mater. 239 90
[3] Stoller R E and Odette G R 1988 J. Nucl. Mater. 155 1328
[4] Lewis M B and Farrell K 1986 Nucl. Instrum. Methods Phys. Res. B 16 163
[5] Bloom E E, Busby J T, Duty C E, Maziasz P J, McGreevy T E, Nelson B E, Pint B A, Tortorelli P F and Zinkle S J 2007 J. Nucl. Mater. 367 1
[6] Zinkle S J and Busby J T 2009 Mater. Today 12 12
[7] Yamamoto T, Odette G R and Kishimoto H 2006 J. Nucl. Mater. 356 27
[8] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
[9] Johnson P B and Mazey D J 1978 Nature 276 595
[10] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 318 234
[11] Zinkle S J and Busby J T 2009 J. Nucl. Mater. 386 8
[12] Trinkaus H 1983 Radiation Effects 78 189
[13] Kalashnikov A N, Chernov I I, Kalin B A and Binyukova S Y 2002 J. Nucl. Mater. 307 362
[14] Edmondson P D, Parish C M, Zhang Y and Hallén A 2011 Scripta Mater. 65 731
[15] Lane P L and Goodhew P J 1983 Philos. Mag. A 48 965
[16] Lefaix-jeuland H, Moll S, Jourdan T and Legendre F 2013 J. Nucl. Mater. 434 152
[17] Tschopp M A and McDowell D L 2007 Philos. Mag. 87 3147
[18] Baskes M I and Vitek V 1985 Metall. Trans. A 16 1625
[19] Yamaguchi M, Nishiyama Y and Kaburaki H 2007 Phys. Rev. B. 76 0355418
[20] Wachowicz E and Kiejna A 2011 Modell. Simul. Mater. Sci. Eng. 9 025001
[21] Rhodes N R, Tschopp M A and Solanki K N 2013 Modell. Simul. Mater. Sci. Eng. 21 035009
[22] Kurtz R J and Heinisch H L 2004 J. Nucl. Mater. 329 1199
[23] Gao F, Heinisch H L and Kurtz R J 2006 J. Nucl. Mater. 351 133
[24] Kurtz R J, Heinisch H L and Gao F 2008 J. Nucl. Mater. 382 134
[25] Gao F, Heinisch H L and Kurtz R J 2009 J. Nucl. Mater. 386 390
[26] Zhang L, Shu X L, Jin S, Zhang Y and Lu G H 2010 J. Phys.: Condens. Matter 22 375401
[27] Zhang L, Fu C C and Lu G H 2013 Phys. Rev. B 87 134107
[28] Tschopp M A, Gao F, Yang L and Solanki K N 2014 J. Appl. Phys. 115 1
[29] Xia J X, Hu W Y, Yang J Y and Ao B Y 2006 Phys. Stat. Soli. B 243 1
[30] Terentyev D and He X 2010 Comput. Mater. Sci. 49 858
[31] Hafez H S Z, Lucas G and Schäublin R 2009 Europhys. Lett. 85 6008
[32] Demkowicz M J, Bhattacharyya D, Usov I, Wang Y Q, Nastasi M and Misra A 2010 Appl. Phys. Lett. 97 161903
[33] Zhang Y F, Millett P C, Tonks M and Zhang L Z 2012 J. Phys.: Condens. Matter 24 305005
[34] Zhang L, Zhang Y and Lu G H 2013 J. Phys.: Condens. Matter 25 095001
[35] Hammond K D, Hu L, Maroudas D and Wirth B D 2015 Europhys. Lett. 110 52002
[36] Kashinath A, Misra A and Demkowicz M J 2013 Phys. Rev. Lett. 110 086101
[37] http://lammps.sandia.gov/
[38] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[39] Baskes M I 1992 Phys. Rev. B 46 2727
[40] Ouyang Y, Zhang B, Liao S and Jin Z 1996 Phys. B 101 161
[41] Deng H, Hu W, Shu X and Zhang B 2003 Surf. Sci. 543 97
[42] Yang J, Hu W, Deng H and Zhao D 2004 Surf. Sci. 572 2074
[43] Hu W, Zhang B, Huang B, Gao F and Bacon D J 2001 J. Phys.: Conden. Matter 13 1193
[44] Hu W, Deng H, Yuan X and Fukumoto M 2003 Euro. Phys. J. B 34 429
[45] Hu W, Shu X and Zhang B 2002 Comput. Mater. Sci. 23 175
[46] Hu W and Fukumoto M 2002 Modell. Simula. Mater. Sci. 10 707
[47] Johnson R A 1990 Phys. Rev. B 41 9717
[48] Baskes M I and Melius C F 1979 Phys. Rev. B 20 3197
[49] Johnson R A 1973 J. Phys. F: Metal Phys. 3 295
[50] Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1
[51] https://staff.aist.go.jp/h.ogawa/GBstudio/indexE.html
[52] Beladi H and Rohrer G S 2013 Acta Mater. 61 1404
[53] Beladi H and Tphrer G S 2013 Metall. Mater.Trans. A 44 115
[54] Tschopp M A, Gao F and Solanki K N 2014 J. Appl. Phys. 115 1
[55] Bulatov V V, Reed B W and Kumar M 2014 Acta Mater. 65 161
[56] Mizuno T, Asato M, Hoshino T and Kawakami K 2001 J. Magn. Magn. Mater. 226 386
[57] Baskes M I and Melius C F 1981 Phys. Rev. B 20 3197
[58] Demkowicz M J, Anderoglu O, Zhang X and Misra A 2011 J. Mater. Res. 26 1666
[59] Bai X M, Vernon L J, Hoagland R G, Voter A F, Nastasi M and Uberuaga B P 2012 Phys. Rev. B 85 214103
[60] Tschopp M A, Solanki K N, Gao F, Sun X, Khaleel M A and Horstemeyer M F 2012 Phy. Rev. B 85 064108
[61] Ryazanov A, Voskoboinikov R E and Trinkaus H 1996 J. Nucl. Mater. 1085 233
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[11] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[15] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
No Suggested Reading articles found!