Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030501    DOI: 10.1088/1674-1056/21/3/030501
GENERAL Prev   Next  

Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system

Dong En-Zeng(董恩增)a)b), Chen Zeng-Qiang(陈增强)a), Chen Zai-Ping(陈在平)b), and Ni Jian-Yun(倪建云)b)
a. Department of Automation, Nankai University, Tianjin 300071, China;
b. Department of Automation, Tianjin University of Technology, Tianjin 300384, China
Abstract  In this paper, a novel four dimensional hyper-chaotic system is coined based on the Chen system, which contains two quadratic terms and five system parameters. The proposed system can generate a hyper-chaotic attractor in wide parameters regions. By using the center manifold theorem and the local bifurcation theory, a pitchfork bifurcation is demonstrated to arise at the zero equilibrium point. Numerical analysis demonstrates that the hyper-chaotic system can generate complex dynamical behaviors, e.g., a direct transition from quasi-periodic behavior to hyper-chaotic behavior. Finally, an electronic circuit is designed to implement the hyper-chaotic system, the experimental results are consist with the numerical simulations, which verifies the existence of the hyper-chaotic attractor. Due to the complex dynamic behaviors, this new hyper-chaotic system is useful in the secure communication.
Keywords:  hyper-chaos      Chen system      pitchfork bifurcation      center manifold theorem  
Received:  06 October 2011      Revised:  19 October 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Natural Science Foundation of China (Grant Nos. 61174094, 50977063, and 60904063), the Foundation of the Application Base and Frontier Technology Research Project of Tianjin, China (Grant No. 10JCZDJC23100), the Development of Science and Technology Foundation of the Higher Education Institutions of Tianjin, China (Grant No. 20080826).
Corresponding Authors:  Dong En-Zeng,dongenzeng@163.com     E-mail:  dongenzeng@163.com

Cite this article: 

Dong En-Zeng(董恩增), Chen Zeng-Qiang(陈增强), Chen Zai-Ping(陈在平), and Ni Jian-Yun(倪建云) Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system 2012 Chin. Phys. B 21 030501

[1] Lorenz E N Atmos. Sci. 20 130
[2] Chua L, Komuro M and Matsumoto T 1986 IEEE Trans. Circuit Sys. I 33 1072
[3] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[4] Li Y X, Liu X Z and Zhang H T 2005 Math. Comput. Mod. 42 1359
[5] Song Y Z 2010 Chin. Phys. B 19 060513
[6] Zhang Q L, Lv L and Zhang Y 2011 Chin. Phys. B 20 090514
[7] Zhang J X and Tang W S 2009 Chaos Soliton. Fract. 42 2181
[8] Qi G Y, Chen G R, van Wyk M A, van Wyk B J and Zhang Y H 2008 Chaos Soliton. Fract. 38 705
[9] Wang X Y and Gao Y F 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 99
[10] Chen G R and Mao Y B 2004 Chaos Soliton. Fract. 21 749
[11] Funakoshi M 2008 Fluid Dyn. Res. 40 1
[12] Zhao Z, Yang L and Chen L S 2011 Nonlinear Dyn. 63 521
[13] Yang X S, Li Q D and Chen G R. 2003 Int. J. Circuit Theory Application 31 637
[14] Li Y X, Tang W K S and Chen G R 2005 Int. J. Bifurcat Chaos 15 3367
[15] Chen Z Q, Yang Y, Qi G Y and Yuan Z Z 2007 Phys. Lett. A 360 696
[16] Wu W J and Chen Z Q 2010 Nonlinear Dyn. 60 615
[17] Yu S M, Lin Q H and Qiu S S 2003 Acta Phys. Sin. 52 25 (in Chinese)
[18] Liu C X and Liu L 2009 Chin. Phys. B 18 2188
[19] Qi G Y, van Wyk M A, van Wyk B J and Chen G R 2009 Chaos Soliton. Fract. 40 2544
[20] Chen G R and Ueta T 1999 Int. J. Bifurcat Chaos 9 1465
[21] Wiggins S 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer-Verlag) pp. 253-270
[1] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[2] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[3] Hyper-chaos encryption using convolutional masking and model free unmasking
Qi Guo-Yuan (齐国元), Sandra Bazebo Matondo. Chin. Phys. B, 2014, 23(5): 050507.
[4] Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system
Xue Wei (薛薇), Qi Guo-Yuan (齐国元), Mu Jing-Jing (沐晶晶), Jia Hong-Yan (贾红艳), Guo Yan-Ling (郭彦岭). Chin. Phys. B, 2013, 22(8): 080504.
[5] Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas
Zhang Yin (张因), Li Yin-Chang (李寅阊), Liu Rui (刘锐), Cui Fei-Fei (崔非非), Pierre Evesque, Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2013, 22(5): 054701.
[6] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[7] Adaptive H synchronization of chaotic systems via linear and nonlinear feedback control
Fu Shi-Hui(付士慧), Lu Qi-Shao(陆启韶), and Du Ying(杜莹) . Chin. Phys. B, 2012, 21(6): 060507.
[8] Symmetry breaking in the opinion dynamics of a multi-group project organization
Zhu Zhen-Tao (朱振涛), Zhou Jing (周晶), Li Ping (李平), Chen Xing-Guang (陈星光). Chin. Phys. B, 2012, 21(10): 100503.
[9] Synchronization of hyperchaotic Chen systems: a class of the adaptive control approach
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2010, 19(4): 040507.
[10] A new four-dimensional hyperchaotic Chen system and its generalized synchronization
Jia Li-Xin(贾立新), Dai Hao(戴浩), and Hui Meng(惠萌). Chin. Phys. B, 2010, 19(10): 100501.
[11] Adaptive generalized synchronization between Chen system and a multi-scroll chaotic system
Chen Long(谌龙), Shi Yue-Dong(史跃东), and Wang De-Shi(王德石). Chin. Phys. B, 2010, 19(10): 100503.
[12] Analysis of transition between chaos and hyper-chaos of an improved hyper-chaotic system
Gu Qiao-Lun(顾巧论) and Gao Tie-Gang(高铁杠). Chin. Phys. B, 2009, 18(1): 84-90.
[13] One-way hash function based on hyper-chaotic cellular neural network
Yang Qun-Ting(杨群亭) and Gao Tie-Gang(高铁杠). Chin. Phys. B, 2008, 17(7): 2388-2393.
[14] Local bifurcation analysis of a four-dimensional hyperchaotic system
Wu Wen-Juan(吴文娟), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉) . Chin. Phys. B, 2008, 17(7): 2420-2432.
[15] Chaotic attractor transforming control of hybrid Lorenz--Chen system
Qi Dong-Lian(齐冬莲), Wang Qiao(王乔), and Gu Hong(顾弘). Chin. Phys. B, 2008, 17(3): 847-851.
No Suggested Reading articles found!