Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030401    DOI: 10.1088/1674-1056/21/3/030401
GENERAL Prev   Next  

Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity

Gamal G.L. Nashed
Department of Mathematics, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt; Centre for Theoretical Physics, The British University in Egypt, El-Sherouk City 11837, Egypt
Abstract  We apply the energy momentum and angular momentum tensor to a tetrad field, with two unknown functions of radial coordinate, in the framework of a teleparallel equivalent of general relativity (TEGR). The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner-Nordström black hole. We also calculate the spatial momentum and angular momentum.
Keywords:  Teleparallel equivalent of general relativity      energy-momentum tensor      angular momentum tensor      angular momentum  
Received:  21 July 2011      Revised:  28 September 2011      Accepted manuscript online: 
PACS:  04.20.-q (Classical general relativity)  
  04.20.Cv (Fundamental problems and general formalism)  
  04.20.Jb (Exact solutions)  
  04.50.Kd (Modified theories of gravity)  
Corresponding Authors:  Gamal G.L. Nashed,nashed@bue.edu.eg     E-mail:  nashed@bue.edu.eg

Cite this article: 

Gamal G.L. Nashed Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity 2012 Chin. Phys. B 21 030401

[1] Misner C W, Thorne K S and Wheeler J A 1973 it Gravitation (San Francisco: Freeman)
[2] Shirauji T, Nashed G G L and Kobayashi Y 1996 Prog. Theor. Phys. 96 933
[3] Kawai T, Shibata K and Tanaka I 2000 Prog. Theor. Phys. 104 505
[4] Bozhkov Y and Rodrigues W A 1995 Gen. Rel. Gravt. 27 813
[5] Itin Y 2002 Class. Quant. Grav. 19 173
[6] Itin Y 2005 J. Math. Phys. 46 012501
[7] Hehl F W, Neeman Y, Nitsch J and von der Heyde P 1978 Phys. Lett. B 78 102
[8] Hehl F W 1979 it Proceedings of the 6th. Course on Spin, Torsion and Supergravity Eric, Italy (New York: Plenum) p. 5
[9] Kawai T 1994 Phys. Rev. D 49 2862
[10] Kawai T 2000 Phys. Rev. D 62 104014
[11] Blagojevi'c M and Vasili'c M 2000 Class. Quant. Grav. 17 3785
[12] Blagojevi'c M and Nikoli'c I A 2000 Phys. Rev. D 62 024021
[13] Hehl F W, MacCrea J D, Mielke E W and Ne閙an Y 1995 Phys. Rep. 258 1
[14] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[15] Nitsch J and Hehl F W 1980 Phys. Lett. B 90 98
[16] Leclerc M 2005 Phys. Rev. D 71 027503
[17] Mielke E W 2004 Phys. Rev. D 69 128501
[18] Obukhov Y N and Pereira J G 2004 Phys. Rev. D 69 128502
[19] Obukhov Y N and Pereira J G 2003 Phys. Rev. D 67 044016
[20] Mielke E W 1990 Phys. Rev. D 42 3388
[21] Tung R S and Nester J M 1999 Phys. Rev. D 60 021501
[22] Maluf J W 1994 J. Math. Phys. 35 335
[23] Maluf J W, da Rocha-neto J F, Toribio T M L and Castello-Branco K H 2002 Phys. Rev. D 65 124001
[24] Mo ller C 1961 Ann. Phys. 12 118
[25] Mo ller C 1961 Mat. Fys. Medd. Dan. Vid. Selsk. 1 10
[26] Mo ller C 1964 Nucl. Phys. 57 330
[27] Mo ller C 1978 Mat. Fys. Medd. Dan. Vid. Selsk. 39 13
[28] Bergqvist G 1992 Class. Quant. Grav. 9 1753
[29] Christodoulou D 1970 Phys. Rev. Lett. 25 1596
[30] Ruffini R 1998 XLIX Yamada Conference on Black Holes and Highenergy Astrophysics (Tokyo: Univ. Acad. Press)
[31] Preparata G, Ruffini R and Wue S S 1998 A & A L 87 338
[32] de Lorenci A V, Figueredo N, Fliche H H and Novello M 2000 Phys. Lett. B 482 134
[33] Maluf J W, Veiga M V O and da Rocha-neto J F 2007 Gen. Relat. Grav. 39 227
[34] Kawai T and Toma N 1992 Prog. Theor. Phys. 87 583
[35] Robertson H P 1932 Ann. Math. 33 496
[36] Nashed G G L 2002 Gen. Relat. Grav. 34 1047
[37] Nashed G G L and Shirafuji T 2007 Int. J. Mod. Phys. D 16 65
[38] Dirac P A M 1964 Lectures on Quantum Mechanics Belfer Gradute School of Science (Monographs Series No. 2 (New York: Yeshiva University)
[39] Maluf J W and da Rocha-Neto J F 2001 Phy. Rev. D 64 084014
[40] Landau L D and Lifshitz E M 1980 The Classical Theory of Fields (Oxford: Pergamon Press)
[41] Maluf J W, Ulhoa S C, Faria F F and da Rocha-Neto J F 2006 Calss. Quant. Grav. 23 6245
[42] Arnowitt R, Deser S and Misner C W 1962 it Gravitation: An Introduction to Current Research (New York: Wiley)
[43] Nashed G G L 2006 Mod. Phys. Lett. A 21 2241
[44] Szabados L B 2004 it Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article Living Rev. Relativity 7, 4. http://www.livingreviews.org/lrr-2004-4.
[45] Xulu S S arXive: gr-qc/0304081
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[8] Local dynamical characteristics of Bessel beams upon reflection near the Brewster angle
Zhi-Wei Cui(崔志伟), Shen-Yan Guo(郭沈言), Yuan-Fei Hui(惠元飞), Ju Wang(王举), and Yi-Ping Han(韩一平). Chin. Phys. B, 2021, 30(4): 044201.
[9] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[10] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[11] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[14] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[15] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
No Suggested Reading articles found!