Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050507    DOI: 10.1088/1674-1056/23/5/050507
GENERAL Prev   Next  

Hyper-chaos encryption using convolutional masking and model free unmasking

Qi Guo-Yuan (齐国元), Sandra Bazebo Matondo
Department of Electrical Engineerin, Tshwane University of Technology Pretoria, South Africa, 0001
Abstract  In this paper, during the masking process the encrypted message is convolved and embedded into a Qi hyper-chaotic system characterizing a high disorder degree. The masking scheme was tested using both Qi hyper-chaos and Lorenz chaos and indicated that Qi hyper-chaos based masking can resist attacks of the filtering and power spectrum analysis, while the Lorenz based scheme fails for high amplitude data. To unmask the message at the receiving end, two methods are proposed. In the first method, a model-free synchronizer, i.e. a multivariable higher-order differential feedback controller between the transmitter and receiver is employed to de-convolve the message embedded in the receiving signal. In the second method, no synchronization is required since the message is de-convolved using the information of the estimated derivative.
Keywords:  Qi hyper-chaos      masking      high-order differentiator      chaos-based encryption  
Received:  05 July 2013      Revised:  04 November 2013      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Incentive Funding National Research Foundation of South Africa (Grant No. 70722) and the Eskom Tertiary Education Support Programme of South Africa.
Corresponding Authors:  Qi Guo-Yuan     E-mail:  qig@tut.ac.za
About author:  05.45.Vx; 05.45.Xt; 05.45.Pq; 05.45.-a

Cite this article: 

Qi Guo-Yuan (齐国元), Sandra Bazebo Matondo Hyper-chaos encryption using convolutional masking and model free unmasking 2014 Chin. Phys. B 23 050507

[1] Luo Y L and Du M H 2013 Chin. Phys. B 22 080503
[2] Wang X Y and Xie Y X 2011 Chin. Phys. B 20 080504
[3] You R Y and Huang X J 2011 Chin. Phys. B 20 020505
[4] Qi G Y, van Wyk M A, van Wyk B J and Chen G R 2008 Phys. Lett. A 372 124
[5] Pan J, Ding Q and Du B 2012 Int. J. Bifurc. Chaos 22 1250125
[6] Grzybowski J M V, Rafikov M and Balthazar J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2793
[7] Lü L, Yu M, Wei L L, Wei L L and Li Y S 2012 Chin. Phys. B 21 100507
[8] Ablay G and Aldemir T 2009 IEEE Int. Conference in Electr. and Electro. Eng., II-182
[9] Tang Q and Wang X Y 2010 Chin. Phys. Lett. 27 030508
[10] Lu D and Wu R 2009 Int. J. Nonlinear Sci. 8 67
[11] Wang S G and Zheng S 2013 Chin. Phys. B 22 070503
[12] Qi G Y, Chen Z Q and Yuan Z Z 2005 Phys. Lett. A 344 189
[13] Sparrow C 1982 The Lorenz Equations: Bifurcations, Chaos and Strange Attractors (New York: Springer-Verlag) p. 770
[14] Du S Z, van Wyk B J, Qi G and Tu C 2009 Chaos Soliton. Fract. 42 1900
[15] Qi G Y, Du S Z, Chen G R and Chen Z 2005 Chaos Soliton. Fract. 23 1671
[1] Open-loop frequency response for a chaotic masking system
Huang Xian-Gao(黄显高), Yu Pei, and Huang Wei(黄伟). Chin. Phys. B, 2006, 15(12): 2894-2901.
[2] A secure communication method for a high-power information signal based on chaotic masking
Li Jian-Fen (李建芬), Li Nong (李农). Chin. Phys. B, 2002, 11(11): 1124-1127.
No Suggested Reading articles found!