Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100503    DOI: 10.1088/1674-1056/19/10/100503
GENERAL Prev   Next  

Adaptive generalized synchronization between Chen system and a multi-scroll chaotic system

Chen Long(谌龙), Shi Yue-Dong(史跃东), and Wang De-Shi(王德石)
Weaponry Engineering Department, Naval University of Engineering, Wuhan 430033, China
Abstract  Based on Lyapunov theory, the adaptive generalized synchronization between Chen system and a multi-scroll chaotic system is investigated. According to the form of target function a proper adaptive controller is designed, by which the controlled Chen system can be synchronized with a multi-scroll chaotic system including unknown parameters. The Lyapunov direct method is exploited to prove that the synchronization error and parameter identification error both converge to zero. Numerical simulation results verify the feasibility of the proposed method further.
Keywords:  Chen system      multi-scroll chaotic system      generalized synchronization  
Received:  11 March 2010      Revised:  27 March 2010      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50875259).

Cite this article: 

Chen Long(谌龙), Shi Yue-Dong(史跃东), and Wang De-Shi(王德石) Adaptive generalized synchronization between Chen system and a multi-scroll chaotic system 2010 Chin. Phys. B 19 100503

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Li Z and Han C Z 2002 Chin. Phys. 11 666
[3] Chen S H, Zhao L M and Liu J 2002 Chin. Phys. 11 543
[4] Li Z and Han C Z 2002 Chin. Phys. 11 9
[5] Tu L L and Lu J A 2005 Chin. Phys. 14 1755
[6] Qi D L 2006 Chin. Phys. 15 1715
[7] El-Gohary A 2006 Chaos, Solitons and Fractals 27 345
[8] Wang C N, Ma J, Chu R T and Li S R 2009 Chin. Phys. B 18 3766
[9] Zhang H, Ma X K, Yang Y and Xu C D 2005 Chin. Phys. 14 86
[10] Wang W Y and Guan Z H 2006 Chaos, Solitons and Fractals 27 97
[11] Li G H 2007 Chin. Phys. 16 2608
[12] Ge Z M and Yang C H 2007 Physica D 231 87
[13] Yang J Z and Hu G 2007 Phys. Lett. A 361 332
[14] Zhang G, Liu Z R and Ma Z J 2007 Chaos, Solitons and Fractals 32 773
[15] Zhang R, Xu Z Y, Yang S X and He X M 2008 Chaos, Solitons and Fractals 38 97
[16] Hu A H and Xu Z Y 2008 Phys. Lett. A 372 3814
[17] Wang D F and Hang P 2008 Chin. Phys. B 17 3603
[18] Sun Y P, Li J M, Wang J A and Wang H L 2010 Chin. Phys. B 19 020505
[19] Chen L, Peng H J and Wand D S 2008 Acta Phys. Sin. 57 3337 (in Chinese) endfootnotesize
[1] A novel multi-scroll chaotic generator: Analysis, simulation, and implementation
Gui-Tao Zhang(张桂韬), Fa-Qiang Wang(王发强). Chin. Phys. B, 2018, 27(1): 018201.
[2] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[3] Adaptive H synchronization of chaotic systems via linear and nonlinear feedback control
Fu Shi-Hui(付士慧), Lu Qi-Shao(陆启韶), and Du Ying(杜莹) . Chin. Phys. B, 2012, 21(6): 060507.
[4] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[5] Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system
Dong En-Zeng(董恩增), Chen Zeng-Qiang(陈增强), Chen Zai-Ping(陈在平), and Ni Jian-Yun(倪建云) . Chin. Phys. B, 2012, 21(3): 030501.
[6] Hölder continuity of generalized chaos synchronization in complex networks
Hu Ai-Hua(胡爱花), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓) . Chin. Phys. B, 2011, 20(9): 090511.
[7] Generalized synchronization of two unidirectionally coupled discrete stochastic dynamical systems
Yuan Zhi-Ling(袁志玲), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓) . Chin. Phys. B, 2011, 20(7): 070503.
[8] Generalized spatiotemporal chaos synchronization of the Ginzburg–Landau equation
Jin Ying-Hua(金英花) and Xu Zhen-Yuan(徐振源) . Chin. Phys. B, 2011, 20(12): 120505.
[9] Implementation of a novel two-attractor grid multi-scroll chaotic system
Luo Xiao-Hua(罗小华), Tu Zheng-Wei(涂正伟), Liu Xi-Rui(刘希瑞), Cai Chang(蔡昌), Liang Yi-Long(梁亦龙), and Gong Pu(龚璞). Chin. Phys. B, 2010, 19(7): 070510.
[10] Synchronization of hyperchaotic Chen systems: a class of the adaptive control approach
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2010, 19(4): 040507.
[11] A new four-dimensional hyperchaotic Chen system and its generalized synchronization
Jia Li-Xin(贾立新), Dai Hao(戴浩), and Hui Meng(惠萌). Chin. Phys. B, 2010, 19(10): 100501.
[12] Chaotic attractor transforming control of hybrid Lorenz--Chen system
Qi Dong-Lian(齐冬莲), Wang Qiao(王乔), and Gu Hong(顾弘). Chin. Phys. B, 2008, 17(3): 847-851.
[13] Passive control and synchronization of hyperchaotic Chen system
Zhang Qun-Jiao(张群娇) and Lu Jun-An(陆君安). Chin. Phys. B, 2008, 17(2): 492-497.
[14] Multiple attractors and generalized synchronization in delayed Mackey--Glass systems
Li Dong (李栋), Zheng Zhi-Gang (郑志刚). Chin. Phys. B, 2008, 17(11): 4009-4013.
[15] Adaptive generalized functional synchronization of chaotic systems with unknown parameters
Wang Dong-Feng(王东风) and Han Pu(韩璞). Chin. Phys. B, 2008, 17(10): 3603-3608.
No Suggested Reading articles found!