Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088702    DOI: 10.1088/1674-1056/26/8/088702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optimization of wide band mesa-type enhanced terahertz photoconductive antenna at 1550 nm

Jian-Xing Xu(徐建星)1,2, Jin-Lun Li(李金伦)1, Si-Hang Wei(魏思航)1,2, Ben Ma(马奔)1,2, Yi Zhang(张翼)3, Yu Zhang(张宇)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Daheng New Epock Technology Inc., Beijing 100085, China
Abstract  

A mesa-type enhanced InGaAs/InAlAs multilayer heterostructure (MLHS) terahertz photoconductive antenna (PCA) at 1550 nm is demonstrated on an InP substrate. The InGaAs/InAlAs superlattice multilayer heterostructures are grown and studied with different temperatures and thickness ratios of InGaAs/InAlAs. The PCAs with different gap sizes and pad sizes are fabricated and characterized. The PCAs are evaluated as THz emitters in a THz time domain spectrometer and we measure the optimized THz bandwidth in excess of 2 THz.

Keywords:  THz      InGaAs/InAlAs MLHS      photoconductive antenna  
Received:  26 February 2017      Revised:  12 April 2017      Accepted manuscript online: 
PACS:  87.50.U (Millimeter/terahertz fields effects)  
  73.21.Cd (Superlattices)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: 

Project supported by the National Instrument Program of China (Grant No. 2012YQ140005), the National Key Basic Research Program of China (Grant Nos. 2013CB932904 and 2016YFB0402403), and the National Natural Science Foundation of China (Grant Nos. 61274125 and 61435012).

Corresponding Authors:  Hai-Qiao Ni     E-mail:  nihq@semi.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Jian-Xing Xu(徐建星), Jin-Lun Li(李金伦), Si-Hang Wei(魏思航), Ben Ma(马奔), Yi Zhang(张翼), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Optimization of wide band mesa-type enhanced terahertz photoconductive antenna at 1550 nm 2017 Chin. Phys. B 26 088702

[1] Chen H, Ma S H, Yan W X, Wu X M and Wang X Z 2013 Chin. Phys. Lett. 30 030702
[2] Berry C W, Wang N, Hashemi M R, Unlu M and Jarrahi M 2013 Nat. Commun. 4 1622
[3] Shi Wei and Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese)
[4] Suzuki M and Tonouchi M 2005 Appl. Phys. Lett. 86 051104
[5] Schwagmann A, Zhao Z Y, Ospald F, Lu H, Driscoll D C, Hanson M P, Gossard A C and Smet J H 2010 Appl. Phys. Lett. 96 141108
[6] Roehle H, Dietz R J B, Hensel H J, Böttcher J, Künzel H, Stanze D, Schell M and Sartorius B 2010 Opt. Express 18 2296
[7] Sartorius B, Roehle H, Künzel H, Böttcher J, Schlak M, Stanze D, Venghaus H and Schell M 2008 Opt. Express 16 9565
[8] Serita K, Chen G, Mizuno S, Murakami H, Kawayama I and Tonouchi M 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 5-10 September, 2010, Rome, Italy p. 1
[9] Dietz R J B, Roehle H, Hensel H J, Böttcher J, Künzel H, Stanze D, Schell M and Sartorius B 2010 CLEO/QELS: 2010 Laser Science to Photonic Applications, 16-21 May, 2010, San Jose, California, USA p. 1
[10] Dietz R J B, Gerhard M, Stanze D, Koch M, Sartorius B and Schell M 2011 Opt. Express 19 25911
[11] Oh J E, Bhattacharya P K, Chen Y C, Aina O and Mattingly M 1990 J. Electron. Mater. 19 435
[12] Yang Y P, Zhang W L and Singh R 2014 Chin. Phys. B 23 128702
[13] Kostakis I and Missous M 2013 AIP Adv. 3 092131
[14] Tominaga Y, Tomiyasu Y and Kadoya Y 2015 J. Cryst. Growth 425 99
[15] Dietz R J, Globisch B, Roehle H, Stanze D, Gobel T and Schell M 2014 Opt. Express 22 19411
[16] Dietz R J B, Globisch B, Gerhard M, Velauthapillai A, Stanze D, Roehle H, Koch M, Göbel T and Schell M 2013 Appl. Phys. Lett. 103 061103
[17] Xu M, Mittendorff M, Dietz R J B, Künzel H, Sartorius B, Göbel T, Schneider H, Helm M and Winnerl S 2013 Appl. Phys. Lett. 103 251114
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[3] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[4] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[5] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[6] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[7] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[8] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[9] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[10] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[11] Excitation-wavelength-dependent THz wave modulation via external bias electric field
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进). Chin. Phys. B, 2020, 29(6): 064210.
[12] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[13] A new viewpoint and model of neural signal generation and transmission: Signal transmission on myelinated neuron
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新), Chao Chang(常超)†, and Guozhi Liu(刘国治)‡. Chin. Phys. B, 2020, 29(10): 108701.
[14] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
[15] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
No Suggested Reading articles found!