INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optimization of wide band mesa-type enhanced terahertz photoconductive antenna at 1550 nm |
Jian-Xing Xu(徐建星)1,2, Jin-Lun Li(李金伦)1, Si-Hang Wei(魏思航)1,2, Ben Ma(马奔)1,2, Yi Zhang(张翼)3, Yu Zhang(张宇)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2 |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Daheng New Epock Technology Inc., Beijing 100085, China |
|
|
Abstract A mesa-type enhanced InGaAs/InAlAs multilayer heterostructure (MLHS) terahertz photoconductive antenna (PCA) at 1550 nm is demonstrated on an InP substrate. The InGaAs/InAlAs superlattice multilayer heterostructures are grown and studied with different temperatures and thickness ratios of InGaAs/InAlAs. The PCAs with different gap sizes and pad sizes are fabricated and characterized. The PCAs are evaluated as THz emitters in a THz time domain spectrometer and we measure the optimized THz bandwidth in excess of 2 THz.
|
Received: 26 February 2017
Revised: 12 April 2017
Accepted manuscript online:
|
PACS:
|
87.50.U
|
(Millimeter/terahertz fields effects)
|
|
73.21.Cd
|
(Superlattices)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Instrument Program of China (Grant No. 2012YQ140005), the National Key Basic Research Program of China (Grant Nos. 2013CB932904 and 2016YFB0402403), and the National Natural Science Foundation of China (Grant Nos. 61274125 and 61435012). |
Corresponding Authors:
Hai-Qiao Ni
E-mail: nihq@semi.ac.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Jian-Xing Xu(徐建星), Jin-Lun Li(李金伦), Si-Hang Wei(魏思航), Ben Ma(马奔), Yi Zhang(张翼), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Optimization of wide band mesa-type enhanced terahertz photoconductive antenna at 1550 nm 2017 Chin. Phys. B 26 088702
|
[1] |
Chen H, Ma S H, Yan W X, Wu X M and Wang X Z 2013 Chin. Phys. Lett. 30 030702
|
[2] |
Berry C W, Wang N, Hashemi M R, Unlu M and Jarrahi M 2013 Nat. Commun. 4 1622
|
[3] |
Shi Wei and Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese)
|
[4] |
Suzuki M and Tonouchi M 2005 Appl. Phys. Lett. 86 051104
|
[5] |
Schwagmann A, Zhao Z Y, Ospald F, Lu H, Driscoll D C, Hanson M P, Gossard A C and Smet J H 2010 Appl. Phys. Lett. 96 141108
|
[6] |
Roehle H, Dietz R J B, Hensel H J, Böttcher J, Künzel H, Stanze D, Schell M and Sartorius B 2010 Opt. Express 18 2296
|
[7] |
Sartorius B, Roehle H, Künzel H, Böttcher J, Schlak M, Stanze D, Venghaus H and Schell M 2008 Opt. Express 16 9565
|
[8] |
Serita K, Chen G, Mizuno S, Murakami H, Kawayama I and Tonouchi M 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 5-10 September, 2010, Rome, Italy p. 1
|
[9] |
Dietz R J B, Roehle H, Hensel H J, Böttcher J, Künzel H, Stanze D, Schell M and Sartorius B 2010 CLEO/QELS: 2010 Laser Science to Photonic Applications, 16-21 May, 2010, San Jose, California, USA p. 1
|
[10] |
Dietz R J B, Gerhard M, Stanze D, Koch M, Sartorius B and Schell M 2011 Opt. Express 19 25911
|
[11] |
Oh J E, Bhattacharya P K, Chen Y C, Aina O and Mattingly M 1990 J. Electron. Mater. 19 435
|
[12] |
Yang Y P, Zhang W L and Singh R 2014 Chin. Phys. B 23 128702
|
[13] |
Kostakis I and Missous M 2013 AIP Adv. 3 092131
|
[14] |
Tominaga Y, Tomiyasu Y and Kadoya Y 2015 J. Cryst. Growth 425 99
|
[15] |
Dietz R J, Globisch B, Roehle H, Stanze D, Gobel T and Schell M 2014 Opt. Express 22 19411
|
[16] |
Dietz R J B, Globisch B, Gerhard M, Velauthapillai A, Stanze D, Roehle H, Koch M, Göbel T and Schell M 2013 Appl. Phys. Lett. 103 061103
|
[17] |
Xu M, Mittendorff M, Dietz R J B, Künzel H, Sartorius B, Göbel T, Schneider H, Helm M and Winnerl S 2013 Appl. Phys. Lett. 103 251114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|