Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017202    DOI: 10.1088/1674-1056/21/1/017202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of gate-buffer combined with a p-type spacer structure on silicon carbide metal–semiconductor field-effect transistors

Song Kun(宋坤), Chai Chang-Chun(柴常春), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), Zhang Xian-Jun(张现军), and Ma Zhen-Yang(马振洋)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices of Ministry of Education, School of Microelectronics, Xidian University, Xián 710071, China
Abstract  An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the device are presented, and the static and dynamic electrical performances are analysed. By comparison with the conventional structure, the proposed structure exhibits a superior frequency response while possessing better DC characteristics. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress the surface trap effect and improve the distribution of the electric field at the gate edge. Meanwhile, a lightly doped n-type buffer layer under the gate reduces depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structural parameter dependences of the device performance are discussed, and an optimized design is obtained. The results show that the maximum saturation current density of 325 mA/mm is yielded, compared with 182 mA/mm for conventional MESFETs under the condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of 79% in the output power density. In addition, improvements of 27% cut-off frequency and 28% maximum oscillation frequency are achieved compared with a conventional MESFET, respectively.
Keywords:  silicon carbide      metal-semiconductor field-effect transistor      p-type spacer      gate-buffer  
Received:  15 July 2011      Revised:  16 September 2011      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.20.At (Surface states, band structure, electron density of states)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 60725415), the National Natural Science Foundation of China (Grant No. 60606006), and the Pre-research Foundation of China (Grant No. 51308030201).

Cite this article: 

Song Kun(宋坤), Chai Chang-Chun(柴常春), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), Zhang Xian-Jun(张现军), and Ma Zhen-Yang(马振洋) Effects of gate-buffer combined with a p-type spacer structure on silicon carbide metal–semiconductor field-effect transistors 2012 Chin. Phys. B 21 017202

[1] Baliga B J 1989 IEEE Electron Dev. Lett. 51 149
[2] Clarke R C and Palmour J W 2002 Proc. IEEE 90 987
[3] Binari S C, Klein P B and Kazior T E 2002 Proc. IEEE 90 1048
[4] Hilton K P, Uren M J and Hayes D G 2002 Mater. Sci. Forum 389-393 1387
[5] Mitra S, Rao M V and Jones A K 2004 Sol. St. Electr. 48 143
[6] Wakabayashi A, Mitani Y and Horio K 2002 IEEE Trans. Electr. Dev. 49 37
[7] Yang L A, Zhang Y M, Yu C L and Zhang Y M 2003 Acta Phys. Sin. 52 302 (in Chinese)
[8] Aroutiounian V M, Avetisyan G A, Buniatyan V V and Soukiassian P G 2006 Appl. Surf. Sci. 252 5445
[9] Hjelmgren H, Andersson K, Eriksson J, Nilsson P A, Südow M and Rorsman N 2007 Sol. St. Electr. 51 1144
[10] Lü H L, Zhang Y M, Zhang Y M, Che Y, Wang Y H and Chen L 2008 Acta Phys. Sin. 57 2871 (in Chinese)
[11] Lü H L, Zhang Y M, Zhang Y M and Che Y 2008 Chin. Phys. B 17 1674
[12] Deng X C, Zhang B, Li Z J and Chen Z L 2008 Microelectron. Eng. 85 295
[13] Cao Q J, Zhang Y M and Zhang Y M 2008 Chin. Phys. B 17 4622
[14] Deng X C, Feng Z, Zhang B, Li Z J, Li L and Pan H S 2009 Chin. Phys. B 16 3018
[15] Lü H L, Zhang Y M, Zhang Y M and Zhang T 2009 Sol. St. Electr. 53 285
[16] Zhang Y R, Zhang B, Li Z J and Deng X C 2010 Chin. Phys. B 19 067102
[17] Hjelmgren H, Allerstam F, Andersson K, Nillson P Å and Rorsman N 2010 IEEE Trans. Electr. Dev. 57 729
[18] Cha H Y, Thomas C and Koley I G 2002 Mater. Sci. Forum 433--436 749
[19] Cha H Y, Thomas C and Koley I G 2003 IEEE Trans. Electr. Dev. 50 1569
[20] Henry H G, Augustine G and de Salvo G C 2004 IEEE Trans. Electr. Dev. 51 839
[21] Nilsson P Å, Allerstam F, Südow M, Andersson K, Hjelmgren H, Sveinbjörnsson E O and Rorsman N 2008 IEEE Trans. Electr. Dev. 55 1875
[22] Cha H Y, Choi Y C and Eastman L F 2004 Int. J. HighSpeed Electron. Syst. 14 884
[23] Sriram S, Hagleitner H and Namishia D 2009 IEEE Electron Dev. Lett. 30 952
[24] Deng X C, Zhang B, Zhang Y R, Wang Y and Li Z J 2011 Chin. Phys. B 20 017304
[25] Roschke M and Schwierz F 2001 IEEE Trans. Electr. Dev. 48 1442
[26] Lü H L, Zhang Y M, Zhang Y M and Yang L A 2004 IEEE Trans. Electr. Dev. 51 1605
[27] Grivickas P, Galeckas A, Linnros J, Syvajarvi M, Yakimova R, Grivickas V and Tellefsen J A 2001 Mater. Sci. Semiconductor Processing 4 191
[28] Thornber K K 1981 J. Appl. Phys. 52 279
[29] Konstantinov A O, Wahab Q, Nordell N and Lindefelt U 1997 Appl. Phys. Lett. 71 90
[30] Sentaurus Device User Guide 2007 Synopsys
[31] Chen G, Qin Y F, Bai S, Wu P, Li Z Y, Chen Z and Han P 2010 Sol. St. Electr. 54 353
[32] Song K, Chai C C, Yang Y T, Jia H J, Zhang X J and Chen B 2011 J. Semincond. 32 334
[33] Schwierz F and Liou J J 2003 Modern Microwave Transistors: Theory, Design and Performance (New Jersey: John Wiley & Sons)
[34] Baliga B J 1996 Power Semiconductor Devices
[35] Zhu C L, Rusli, Tin C C, Yoon S F and Ahn J 2006 Microelectron. Eng. 83 96
[36] Sze S and Ng K K 2006 Physics of Semiconductor Devices (New Jersey: John Wiley & Sons) p.396
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[6] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[7] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[8] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[9] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[10] Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes
Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况). Chin. Phys. B, 2018, 27(8): 087102.
[11] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[12] Shortening turn-on delay of SiC light triggered thyristor by 7-shaped thin n-base doping profile
Xi Wang(王曦), Hong-Bin Pu(蒲红斌), Qing Liu(刘青), Li-Qi An(安丽琪). Chin. Phys. B, 2018, 27(10): 108502.
[13] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[14] Injection modulation of p+–n emitter junction in 4H–SiC light triggered thyristor by double-deck thin n-base
Xi Wang(王曦), Hongbin Pu(蒲红斌), Qing Liu(刘青), Chunlan Chen(陈春兰), Zhiming Chen(陈治明). Chin. Phys. B, 2017, 26(10): 108505.
[15] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
No Suggested Reading articles found!