CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains |
Liu Dan-Dan(刘丹丹) and Zhang Hong(张红)† |
College of Physical Science and Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.
|
Received: 01 April 2011
Revised: 27 April 2011
Accepted manuscript online:
|
PACS:
|
71.45.Gm
|
(Exchange, correlation, dielectric and magnetic response functions, plasmons)
|
|
72.15.Nj
|
(Collective modes (e.g., in one-dimensional conductors))
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Cite this article:
Liu Dan-Dan(刘丹丹) and Zhang Hong(张红) A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains 2011 Chin. Phys. B 20 097105
|
[1] |
Nie S and Emory S R 1997 Science 275 1102
|
[2] |
Xu H, Bjerneld E J, Käll M and Börjesson L 1999 Phys. Rev. Lett. 83 4357
|
[3] |
Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
|
[4] |
Sönnichsen C, Franzl T, Wilk T, von Plesson G, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402
|
[5] |
Li K, Stockman M L and Bergman D J 2003 Phys. Rev. Lett. 91 227402
|
[6] |
Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
|
[7] |
Hervieux P A and Bigot J Y 2004 Phys. Rev. Lett. 92 197402
|
[8] |
Coe J V, Heer J M, Teeters Kennedy S, Tian H and Rodriguez K R 2008 Annu. Rev. Phys. Chem. 59 179
|
[9] |
Schwartzberg A M and Zhang J Z 2008 J. Phys. Chem. C 112 10323
|
[10] |
Kneipp J, Kneipp H and Kneipp K 2008 Chem. Soc. Rev. 37 1052
|
[11] |
Bell A T 2003 Science 299 1688
|
[12] |
Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549
|
[13] |
Chen J, Wang D, Xi J, Au L, Sieckkinen A, Warsen A, Li Z Y, Zhang H, Xia Y and Li X 2007 it Nano Lett. 7 1318
|
[14] |
Nehl C L, Liao H and Hafner J H 2006 Nano Lett. 6 683
|
[15] |
Shumaker Parry J S, Rochholz H and Kreiter M 2005 Adv. Mater. 17 2131
|
[16] |
Wiley B J, Chen Y, Mclellan J M, Xiong Y, Li Z Y, Ginger D and Xia Y 2007 Nano Lett. 7 1032
|
[17] |
Sung J, Hicks E M, van Duyne R P and Spears K G 2007 J. Phys. Chem. C 111 10368
|
[18] |
Langhammer C, Schwind M, Kasemo B and Zori'c I 2008 Nano Lett. 8 146
|
[19] |
Aizpurua J, Hanarp P, Sutherland D S, Käll M, Bryant G W and de Abajo F J G 2003 Phys. Rev. Lett. 90 057401
|
[20] |
Chan G H, Zhao J, Hicks E M, Schatz G C and van Duyne R P 2007 Nano Lett. 7 1947
|
[21] |
Chao C, Wu D J and Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese)
|
[22] |
Hong X, Du D D, Qiu Z R and Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese)
|
[23] |
Wallis T M, Nilius N and Ho W 2002 Phys. Rev. Lett. 89 236802
|
[24] |
Wei Q H, Su K H, Durant S and Zhang X 2004 Nano Lett. 4 1067
|
[25] |
Duan J L, Cornelius T W, Liu J, Karim S, Yao H J, Picht O, Rauber M, Müller S and Neumann R 2009 J. Phys. Chem. C 113 13583
|
[26] |
Yan J, Yuan Z and Gao S W 2007 Phys. Rev. Lett. 98 216602
|
[27] |
Yan J and Gao S W 2008 Phys. Rev. B 78 235413
|
[28] |
Harris N, Arnold M D, Blaber M G and Ford M J 2009 J. Phys. Chem. C 113 2784
|
[29] |
Hanarp P, Käll M and Sutherland D S 2003 J. Phys. Chem. B 107 5768
|
[30] |
Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
|
[31] |
Nilius N, Wallis T M and Ho W 2002 Science 297 1853
|
[32] |
Castro A, Marques M A L, Alonso J A, Bertsch G F, Yabana K and Rubio A 2002 J. Chem. Phys. 116 1930
|
[33] |
Andrade X, Botti S, Marques M and Rubio A 2007 J. Chem. Phys. 126 184106
|
[34] |
Cui L, Zhao J, Hu Y J, Teng Y Y, Zeng X H and Gu B 2006 Appl. Phys. Lett. 89 211103
|
[35] |
Brabec T and krausz F 2000 Rev. Mod. Phys. 72 545
|
[36] |
Castro A, Räsänen E, Rubio A and Gross E K U 2009 Europhys. Lett. 87 53001
|
[37] |
Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
|
[38] |
Castro A, Marques M A L and Rubio A 2004 J. Chem. Phys. 121 3425
|
[39] |
Casida M E 1995 in Recent Advances in Density Functional Methods (Part I) ed. D.P. Chong (Singapore: World Scientific), p. 155
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|