CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure |
Liu An-Jin(刘安金)a),Qu Hong-Wei(渠红伟)a),Chen Wei(陈微)a),Jiang Bin(江斌)a), Zhou Wen-Jun(周文君)a),Xing Ming-Xin(邢名欣) a),and Zheng Wan-Hua(郑婉华) a)b)† |
a Nano-optoelectronics Lab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors,
Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.
|
Received: 07 July 2010
Revised: 29 July 2010
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
42.60.Pk
|
(Continuous operation)
|
|
Fund: Project supported by the National Key Basic Research Special Foundation of China (Grant No. 2011CB922000), the National Natural Science Foundation of China (Grant Nos. 61025025 and 60838003), and the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408). |
Cite this article:
Liu An-Jin(刘安金), Qu Hong-Wei(渠红伟), Chen Wei(陈微), Jiang Bin(江斌), Zhou Wen-Jun(周文君), Xing Ming-Xin(邢名欣), and Zheng Wan-Hua(郑婉华) Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure 2011 Chin. Phys. B 20 024204
|
[1] |
Iga K, Koyama F and Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845
|
[2] |
Wu J and Summers H D 2010 Chin. Phys. B 19 014213
|
[3] |
Yang H, Guo X, Guan B L, Wang T X and Shen G D 2008 Acta Phys. Sin. 57 2959 (in Chinese)
|
[4] |
Li H Q, Zhang J, Cui D F, Xu Z Y, Ning Y Q, Yan C L, Qin L, Liu Y, Wang L J and Cao J L 2004 Acta Phys. Sin. 53 2986 (in Chinese)
|
[5] |
Tong C Z, Niu Z C, Han Q and Wu R H 2005 Acta Phys. Sin. bf 54 3651 (in Chinese)
|
[6] |
Mukoyama N, Otoma H, Sakurai J, Ueki N and Nakayama H 2008 it Proc. SPIE 6908 69080H1
|
[7] |
Rao Z, Matteo J A, Hesselink L and Harris J S 2006 Proc. SPIE 6132 61320J1
|
[8] |
Szweda R 2006 III-Vs REVIEW 19 32
|
[9] |
Giannopoulos A V, Kasten A M, Long C M, Chen C and Choquette K D 2008 Appl. Opt. 47 4555
|
[10] |
Ortsiefer M, Hofmann W, Rönneberg E, Boletti A, Gatto A, Boffi P, Rosskopf J, Shau R, Neumeyr C, Böhm G, Martinelli M and Amann M C 2008 Electron. Lett. 44 974
|
[11] |
Wiedenmann D, King R, Jung C, J"ager R, Michalzik R, Schnitzer P, Kicherer M and Ebeling K J 1999 IEEE J. Select. Topics Quantum Electron. 5 503
|
[12] |
Lin C K, Tandon A, Djordjev K, Corzine S W and Tan M R T 2007 it IEEE J. Select. Topics Quantum Electron. 13 1332
|
[13] |
Zappe H P, Hess M, Moser M, Hövel R, Gulden K, Gauggel H P and Sopra di F M 2000 Appl. Opt. 39 2475
|
[14] |
Cattaneo H and Hernberg R 2005 Appl. Opt. 44 6593
|
[15] |
Serkland D K, Peake G M, Geib K M, Lutwak R, Garvey R M, Varghese M and Mescher M 2006 Proc. SPIE 6132 6132081
|
[16] |
Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460
|
[17] |
Chang-Hasnain C J 2003 IEEE Opt. Commun. S30--S34
|
[18] |
Amann M C and Hofmann W 2009 IEEE J. Select. Topics Quantum Electron. 15 861
|
[19] |
Leisher P O, Danner A J and Choquette K D 2006 IEEE Photon. Technol. Lett. 18 2156
|
[20] |
Onishi Y, Saga N, Koyama K, Doi H, Ishizuka T, Yamada T, Fujii K, Mori H, Hashimoto J, Shimazu M, Yamaguchi A and Katsuyama T 2009 IEEE J. Select. Topics Quantum Electron. 15 838
|
[21] |
Kapon E and Sirbu A 2009 Nature Photon. 3 27
|
[22] |
Dallesasse J M, Holonyak N, Sugg A R, Richard T A and El-Zein N 1990 Appl. Phys. Lett. bf 57 2844
|
[23] |
Lear K L, Choquette K D, Schneider R P and Kilcoyne S P 1995 Appl. Phys. Lett. 66 2616
|
[24] |
Choquette K D, Geib K M, Ashby C I H, Twesten R D, Blum O, Hou H Q, Follstaedt D M, Hammons B E, Mathes D and Hull R 1997 IEEE J. Select. Topics Quantum Electron. 3 916
|
[25] |
Satuby Y and Orenstein M 1998 IEEE Photon. Technol. Lett. 10 760
|
[26] |
Leisher P O, Danner A J, Raftery Jr J J and Choquette K D 2005 it Electron. Lett. 41 1010
|
[27] |
Yang H P D, Lai F I, Chang Y H, Yu H C, Sung C P, Kuo H C, Wang S C, Lin S Y and Chi J Y 2005 Electron. Lett. 41 326
|
[28] |
Weigl B, Grabherr M, Michalzik R, Reiner G and Ebeling K J 1996 it IEEE Photon. Technol. Lett. 8 971
|
[29] |
Lim D H, Hwang S M and Nam S H 2001 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2 724
|
[30] |
Martinsson H, Vukuusi'c J A, Grabherr M, Michalzik R, J"ager R, Ebeling K J and Larsson A 1999 IEEE Photon. Technol. Lett. 11 1536
|
[31] |
Haglund AA, Gustavsson J S, Vukuusi'c J, Modh P and Larsson A 2004 IEEE Photon. Technol. Lett. 16 368
|
[32] |
Huang M C Y, Zhou Y and Chang-Hasnain C J 2007 Nature Photon. 1 119
|
[33] |
Shinada S and Koyama F 2002 IEEE Photon. Technol. Lett. bf 14 1641
|
[34] |
Ueki N, Sakamoto A, Nakamura T, Nakayama H, Sakurai J, Otoma H, Miyamoto Y, Yoshikawa M and Fuse M 1999 IEEE Photon. Technol. Lett. 11 1539
|
[35] |
Ostermann J M, Rinaldi F, Debernardi P and Michalzik R 2005 it IEEE Photon. Technol. Lett. 17 2256
|
[36] |
Unold H J, Golling M, Michalzik R, Supper D and Ebeling K J 2001 Proc. 27th Euro. Conf. Opt. Commun. p. talk Th.A.1.4
|
[37] |
Liu A J, Xing M X, Qu H W, Chen W, Zhou W J and Zheng W H 2009 it Appl. Phys. Lett. 94 191105
|
[38] |
Liu A J, Xing M X, Qu H W, Chen W, Zhou W J and Zheng W H 2010 Acta Phys. Sin. 59 1035 (in Chinese)
|
[39] |
Song D S, Kim S H, Park H G, Kim C K and Lee Y H 2002 Appl. Phys. Lett. 80 3901
|
[40] |
Yang H P D, Hsu I C, Chang Y H, Lai F I, Yu H C, Lin G, Hsiao R S, Maleev N A, Blokhin S A, Kuo H C and Chi J Y 2008 J. Lightw. Technol. 26 1387
|
[41] |
Romstad F, Bischoff S, Juhl M, Jacobsen S and Birkedal D 2008 it Proc. SPIE 6908 69080C1
|
[42] |
Stevens R, Gilet P, Larrue A, Grenouillet L, Olivier N, Grosse P, Gilbert K, Hladys B, Bakir B B, Berggren J, Hammar M and Chelnokov A 2008 Proc. SPIE 6997 69970X1
|
[43] |
Kasten A M, Sulkin J D, Leisher P O, McElfresh D K, Vacar D and Choquette K D 2008 IEEE J. Selet. Topics Quantum Electron. 14 1123
|
[44] |
Czyszanowski T, Dems M, Thienpont H and Panajotov K 2007 Opt. Express 15 1301
|
[45] |
Young E W, Choquette K D, Chuang S L, Geib K M, Fischer A J and Allerman A A 2001 IEEE Photon. Technol. Lett. 13 927
|
[46] |
Fischer A J, Chow W W, Serkland D K, Merman A A, Geib K M and Choquette K D 2001 Conference on Lasers and Electro-Optics (CLEO) p. talk CTuB1
|
[47] |
Chang K S, Song Y M and Lee Y T 2007 Appl. Phys. B 89 231
|
[48] |
Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K and Baba T 2004 Appl. Phys. Lett. bf 85 5161
|
[49] |
Leisher P O, Danner A J, Raftery Jr J J, Siriani D and Choquette K D 2006 IEEE J. Quantum Electron. 42 1091
|
[50] |
Morito K, Mori D, Mizuta E and Baba T 2005 Proc. SPIE bf 5722 191
|
[51] |
Yang H P D, Hsu I C, Lai F I, Kuo H C and Chi J Y 2006 Jpn. J. Appl. Phys. 45 L871
|
[52] |
Yokouchi N, Danner A J and Choquette K D 2003 Appl. Phys. Lett. 82 1344
|
[53] |
Yokouchi N, Ueda N, Shinagawa T, Iwai N, Sasaki Y, Ariga M, Uchiyama S, Shiina Y and Kasukawa A 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics 2 II-586
|
[54] |
Ogura A, Kuchiki S, Shiraishi K, Ohta K and Oishi I 2001 IEEE Photon. Technol. Lett. 13 1191
|
[55] |
Heinrich J, Zeeb E and Ebeling K J 1997 IEEE Photon. Technol. Lett. 9 1555
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|