Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014206    DOI: 10.1088/1674-1056/22/1/014206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers

Shi Guo-Zhu (史国柱), Guan Bao-Lu (关宝璐), Li Shuo (李硕), Wang Qiang (王强), Shen Guang-Di (沈光地)
Key Laboratory of Opto-electronics Technology of Ministry of Education, Beijing University of Technology, Beijing 100124, China
Abstract  We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with 16-μm oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced self-heating in active region and the Joule heating caused by the series resistance are the main sources of the power dissipation. In addition, carrier leakage induced self-heating increases as injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at larger current. Our study provides useful guideline to design 980-nm oxide-confined VCSEL for thermal performance enhancement.
Keywords:  vertical-cavity surface-emitting lasers      power dissipation      thermal rollover  
Received:  21 May 2012      Revised:  13 June 2012      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.72.Ai (Infrared sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60908012 and 61076148) and the Foundation of Beijing Municipal Education Commission, China (Grant No. KM201010005030).
Corresponding Authors:  Guan Bao-Lu     E-mail:  gbl@bjut.edu.cn

Cite this article: 

Shi Guo-Zhu (史国柱), Guan Bao-Lu (关宝璐), Li Shuo (李硕), Wang Qiang (王强), Shen Guang-Di (沈光地) Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers 2013 Chin. Phys. B 22 014206

[1] Hofmann W, Moser W, Wolf P, Mutig A, Kroh M and Bimberg D 2011 Optical Fiber Communication Conference March 6, 2011 Los Angeles, USA, p. PDPC5
[2] Liu A J, Qu H W, Chen W, Jiang B, Zhou W J, Xing M X and Zheng W H 2011 Chin. Phys. B 20 024204
[3] Anan T, Suzuki N, Yashiki N, Fukatsu K, Hatakeyama H, Akagawa T, Tokutome K and Tsuji M 2008 Optical Fiber Communication/National Fiber Optic Engineer Conference February 24-28, 2008 San Diego, USA, p. 1
[4] Guan B L, Ren X J, Li C, Li S, Shi G Z and Guo X 2011 Chin. Phys. B 20 094206
[5] Chang Y C, Wang C and Coldren L A 2007 Electron. Lett. 43 1022
[6] Lin C K, Tandon A, Djordjev K, Corzine S and Tan M 2007 IEEE J. Select. Topics Quantum Electron. 13 1332
[7] Zhang W L, Pan W, Luo B, Li X F, Zou X H and Wang M Y 2008 Chin. Phys. B 17 1821
[8] Schow C, Doany F and Kash J 2010 IEEE Spectrum 47 32
[9] Goldberg L, Mclntosh C and Cole B 2011 Opt. Express 19 4261
[10] Wu J and Summer H D 2009 Chin. Phys. B 18 4912
[11] Chang Y C and Coldren L A 2009 IEEE J. Select. Topics Quantum Electron. 15 704
[12] Mutig A, Lott J A, Blokhin S A, Wolf P, Moser P, Hofmann W, Nadtochiy A M, Payusov A and Bimberg D 2010 Appl. Phys. Lett. 97 151101
[13] Ding Y, Fan W J, Xu W, Tong C Z, Liu Y and Zha L J 2010 Appl. Phys. B 98 773
[14] Mutig A, Fiol G, Moser P, Arsenijevic D, Shchukin V A, Hopfer F and Bimberg D 2008 Electron. Lett. 44 1305
[15] Omari A and Lear K 2004 IEEE Photon. Technol. Lett. 16 969
[16] Westbergh P, Gustavsson S, Haglund A, Skold M, Joel A and Larsson A 2009 IEEE J. Select. Topics Quantum Electron. 15 649
[17] Li T, Ning Y Q, Hao E J, Cui J J, Zhang Y, Liu G Y, Qin L, Liu Y, Wang L J, Cui D F and Xu Z Y 2009 Sci. China. Ser. F 52 1266
[18] Baveja P, Kogel B, Westbergh P, Gustavsson J, Haglund A, Maywar A, Agrawal G and Larsson A 2011 Opt. Express 19 15490
[19] Sadofev C J, Blumstengel S, Puls S and Henneberger J F 2006 Appl. Phys. Lett. 89 051108
[20] Vurgaftman I, Meye J and Mohan L 2001 Appl. Phys. Rev. 89 5815
[21] Knox W, Chemla D, Livescu G, Cunningham J and Henry J 1988 Phys. Rev. Lett. 61 1290
[22] Mena P, Morikuni J, Kang S, Harton A and Wyatt K 1999 J. Lightwave Technol. 17 865
[23] Coldren L and Corzine S 1995 Diode Lasers and Photonic Integrated Circuits (New York: Wiley) pp. 81-83
[24] Wilmsen C, Temkin H and Coldren L 1999 Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization (New York: Cambridge University Press) pp. 35-36
[25] Chang-Hasnain C, Zah C, Hasnain G, Harbison J, Florez L Stoffel N and Lee T P 1991 Appl. Phys. Lett. 58 1247
[1] Power-induced polarization switching and bistability characteristics in 1550-nm VCSELs subjected to orthogonal optical injection
Chen Jian-Jun (陈建军), Xia Guang-Qiong (夏光琼), Wu Zheng-Mao (吴正茂). Chin. Phys. B, 2015, 24(2): 024210.
[2] The improved output performance of a broad-area vertical-cavity surface-emitting laser with an optimized electrode diameter
Zhang Xing (张星), Ning Yong-Qiang (宁永强), Qin Li (秦莉), Tong Cun-Zhu (佟存柱), Liu Yun (刘云), Wang Li-Jun (王立军). Chin. Phys. B, 2013, 22(6): 064209.
[3] Modeling of resistance characteristics of a continuously-graded distributed Bragg reflector in a 980-nm vertical-cavity surface-emitting laser
Huang Meng (黄梦), Wu Jian (吴坚), Cui Huai-Yang (崔怀洋), Qian Jian-Qiang (钱建强), Ning Yong-Qiang (宁永强). Chin. Phys. B, 2012, 21(10): 104207.
[4] Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure
Liu An-Jin(刘安金), Qu Hong-Wei(渠红伟), Chen Wei(陈微), Jiang Bin(江斌), Zhou Wen-Jun(周文君), Xing Ming-Xin(邢名欣), and Zheng Wan-Hua(郑婉华) . Chin. Phys. B, 2011, 20(2): 024204.
[5] Thermal stability improvement of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations using non-uniform finger spacing
Chen Liang(陈亮), Zhang Wan-Rong(张万荣), Jin Dong-Yue(金冬月), Shen Pei(沈珮), Xie Hong-Yun(谢红云), Ding Chun-Bao(丁春宝),Xiao Ying(肖盈),Sun Bo-Tao(孙博韬), and Wang Ren-Qing(王任卿) . Chin. Phys. B, 2011, 20(1): 018501.
[6] A novel interconnect-optimal repeater insertion model with target delay constraint in 65nm CMOS
Zhu Zhang-Ming(朱樟明), Qian Li-Bo(钱利波), and Yang Yin-Tang(杨银堂). Chin. Phys. B, 2009, 18(3): 1188-1193.
[7] Power dissipation characteristics of great power and super high speed semiconductor switch
Liang Lin(梁琳), Yu Yue-Hui(余岳辉), and Peng Ya-Bin(彭亚斌) . Chin. Phys. B, 2008, 17(7): 2627-2632.
[8] Micromechanical tunable vertical-cavity surface-emitting lasers
Guan Bao-Lu(关宝璐), Guo Xia(郭霞), Deng Jun(邓军), Qu Hong-Wei(渠红伟), Lian Peng(廉鹏), Dong Li-Min(董立敏), Chen Min(陈敏), and Shen Guang-Di(沈光地). Chin. Phys. B, 2006, 15(12): 2959-2962.
No Suggested Reading articles found!