Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 057502    DOI: 10.1088/1674-1056/20/5/057502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synthesis and magnetic properties of Fe100-xMox alloy nanowire arrays

Gao Hua (高华), Gao Da-Qiang (高大强), Xue De-Sheng (薛德胜)
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  The Fe100-xMox (13 < x < 25) alloy nanowire arrays are synthesized by electrodeposition of Fe2 + and Mo2 + with different ionic ratios into the anodic aluminum oxide templates. The crystals of Fe100-xMox alloy nanowires gradually change from polycrystalline phase to amorphous phase with the increase of the Mo content and the nanowires are of amorphous structure when the Mo content reaches 25 at%, which are revealed by the X-ray diffraction and the selected area electron diffraction patterns. As the Mo content increases, the magnetic hysteresis loops of Fe100-xMox alloy nanowires in parallel to the nanowire axis are not rectangular and the slopes of magnetic hysteresis loops increase. Those results indicate that the magnetostatic interactions between nanowires and the magnetocrystalline anisotropy both have significant influences on the magnetization reversal process of the nanowire arrays.
Keywords:  amorphous materials      Fe100-xMox      magnetic properties  
Received:  09 September 2010      Revised:  25 January 2011      Accepted manuscript online: 
PACS:  75.50.Kj (Amorphous and quasicrystalline magnetic materials)  
  75.50.Bb (Fe and its alloys)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars, China (Grant No. 50925103), the Key Program of the Chinese Ministry of Education (Grant No. 309027), and the Fund for Academic Newcomer of Ph. D. of Lanzhou University, China.

Cite this article: 

Gao Hua (高华), Gao Da-Qiang (高大强), Xue De-Sheng (薛德胜) Synthesis and magnetic properties of Fe100-xMox alloy nanowire arrays 2011 Chin. Phys. B 20 057502

[1] Chou S Y 1997 P. IEEE 85 652
[2] Bao J C, Tie C Y, Xu Z, Ma Q, Hong J M, Sang H and Sheng D 2002 Adv. Mater. 14 44
[3] Yue G H, Wang L S, Wang X, Chen Y Z and Peng D L 2009 J. Appl. Phys. 105 074312
[4] Almasi Kashi M, Ramazani A, Es'haghi F, Ghanbari S and Esmaeily A S 2010 Physica B 405 2620
[5] Liu L H, Li H T, Fan S H, Gu J J, Li Y P and Sun H Y 2009 J. Magn. Magn. Mater. 321 3511
[6] El-Sheikh S M, Harraz F A and Hessien M M 2010 Mater. Chem. Phys. 123 254
[7] Gao D Q, Fu J L, Xu Y and Xue D S 2008 Mater. Lett. 62 3070
[8] Yuan X Y, Wu G S, Xie T, Lin Y and Zhang L D 2004 Nanotechnology 15 59
[9] Zhan Q F, Gao J H, Liang Y Q, Di N L and Cheng Z H 2005 Phys. Rev. B 72 024428
[10] Henry Y, Ounadjela K, Piraux L, Dubois S, George J M and Duvail J L 2001 Eur. Phys. J. B 20 35
[11] S'anchez-Barriga J, Lucas M, Radu F, Martin E, Multigner M, Marin P, Hernando A and Rivero G 2009 Phys. Rev. B 80 184424
[12] Zeng H, Skomski R, Menon L, Liu Y, Bandyopadhyay S and Sellmyer D J 2002 Phys. Rev. B 65 134426
[13] Prida V M, Vega V, Serantes D, Baldomir D, Ilyn M, Zhukov A P, Gonz'alez J and Hernando B 2009 Phys. Status Solidi A bf206 2234
[14] Fodor P S, Tsoi G M and Wenger L E 2003 J. Appl. Phys. 93 7438
[15] Su H L, Ji G B, Tang S L, Chen W, Li Z, Gu B X and Du Y W 2005 J. Appl. Phys. 97 116104
[16] Sumiyama K, Ezawa H and Nakamura Y 1987 J. Phys. Chem. Solids 48 255
[17] Jartych E, Karolus M, Oleszak D, .Zurawicz J K, Sarzy'nski J and Budzy'nski M 2002 J. Alloys Compd. 337 69
[18] Ren Y, Wang J B, Liu Q F, Han X H and Xue D S 2009 Chin. Phys. B 18 3573
[19] Yang W, Cui C X, Sun J B and Wang B L 2010 J. Mater. Sci. 45 1523
[20] Gao T R, Chen Z Y, Peng Y and Li F S 2002 Chin. Phys. 11 1307
[21] Shi H G, Fu J L and Xue D S 2005 Acta Phys. Sin. 54 3862
[22] Jiraskova Y, Zabransky K, Turek I, Bursik J and Jancik D 2009 J. Alloys Compd. 477 55
[23] Ross C A, Hwang M, Shima M, Cheng J Y, Farhoud M, Savas T A, Smith H I, Schwarzacher W, Ross F M, Redjdal M and Humphrey F B 2002 Phys. Rev. B 65 144417
[24] Aldred A T 1968 J. Phys. C: Solid State Phys. 1 244
[25] Zhan Q F, Chen Z Y, Xue D S and Li F S 2002 Phys. Rev. B 66 134436
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[3] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[6] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[7] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[8] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[9] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[10] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[11] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
[12] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
[13] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[14] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[15] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
No Suggested Reading articles found!