Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 028901    DOI: 10.1088/1674-1056/20/2/028901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A traffic flow cellular automaton model to considering drivers' learning and forgetting behaviour

Ding Jian-Xun(丁建勋), Huang Hai-Jun(黄海军), and Tian Qiong(田琼)
School of Economics and Management, Beihang University, Beijing 100191, China
Abstract  It is known that the commonly used NaSch cellular automaton (CA) model and its modifications can help explain the internal causes of the macro phenomena of traffic flow. However, the randomization probability of vehicle velocity used in these models is assumed to be an exogenous constant or a conditional constant, which cannot reflect the learning and forgetting behaviour of drivers with historical experiences. This paper further modifies the NaSch model by enabling the randomization probability to be adjusted on the bases of drivers' memory. The Markov properties of this modified model are discussed. Analytical and simulation results show that the traffic fundamental diagrams can be indeed improved when considering drivers' intelligent behaviour. Some new features of traffic are revealed by differently combining the model parameters representing learning and forgetting behaviour.
Keywords:  cellular automaton model      learning and forgetting behaviour      Markov property  
Received:  26 July 2010      Revised:  30 August 2010      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  64.60.Ak  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 70821061) and the National Basic Research Program of China (Grant No. 2006CB705503).

Cite this article: 

Ding Jian-Xun(丁建勋), Huang Hai-Jun(黄海军), and Tian Qiong(田琼) A traffic flow cellular automaton model to considering drivers' learning and forgetting behaviour 2011 Chin. Phys. B 20 028901

[1] Lighthill M J and Whitham G B 1955 Proc. Royal Society Ser. A 229 281
[2] Gazis D C, Herman R and Rothery R W 1961 Oper. Res. 9 545
[3] Kuznetsov A V and Avramenko A A 2009 Math. Biosciences bf 218 142
[4] Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P and Yin X T 2009 Chin. Phys. B 18 4037
[5] Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P and Wang H L 2010 Chin. Phys. B 19 048201
[6] Belitsky V, Mari'c N and Schütz G M 2007 J. Phys. A 40 11221
[7] Foulaadvand M E and Belbasi S 2007 J. Phys. A 40 8289
[8] Nagel K and Schreckenberg M 1992 J. Physique I (France) bf 2 2221
[9] Fukui M and Ishibashi Y 1996 J. Phys. Soc. Jpn. 65 1868
[10] Hu S X, Gao K, Wang B H and Lu Y F 2008 Chin. Phys. B bf 17 1863
[11] Li X G, Gao Z Y, Jia B and Jiang R 2009 Physica A 388 2051
[12] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Euro. Phys. J. B 5 793
[13] Jiang R and Wu Q S 2006 Physica A 364 493
[14] Krug J and Ferrari J A 1996 J. Phys. A 29 465
[15] Evans M R 1997 J. Phys. A 30 5669
[16] Ktitarev D V, Chowdhury D and Wolf D E 1997 J. Phys. A bf 30 221
[17] Nagel K, Wolf D F and Wargner P 1998 Phys. Rev. E 58 1425
[18] Knospe W, Santen L and Schadschneider A 1999 Physica A bf 265 614
[19] Treiber M and Helbing D 1999 J. Phys. A 32 17
[20] Halici U 2001 Bio. System 63 21
[21] Tsoularis A and Wallace J 2005 Math. Biosciences 195 76 endfootnotesize
[1] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[2] Weighted mean velocity feedback strategy in intelligent two-route traffic systems
Xiang Zheng-Tao (向郑涛), Xiong Li (熊励). Chin. Phys. B, 2013, 22(2): 028901.
[3] Properties of train traffic flow in moving block system
Wang Min(王敏), Zeng Jun-Wei(曾俊伟), Qian Yong-Sheng(钱勇生), Li Wen-Jun(李文俊), Yang Fang(杨芳), and Jia Xin-Xin(贾欣欣) . Chin. Phys. B, 2012, 21(7): 070502.
[4] Traffic dynamics of an on-ramp system with a cellular automaton model
Li Xin-Gang(李新刚), Gao Zi-You(高自友), Jia Bin(贾斌), and Jiang Rui(姜锐). Chin. Phys. B, 2010, 19(6): 060501.
[5] Traffic flow of a roundabout crossing with an open boundary condition
Bai Ke-Zhao(白克钊),Tan Hui-Li(谭惠丽), Kong Ling-Jiang(孔令江), and Liu Mu-Ren(刘慕仁). Chin. Phys. B, 2010, 19(4): 040510.
[6] Combined bottleneck effect of on-ramp and bus stop in a cellular automaton model
Song Yu-Kun(宋玉鲲) and Zhao Xiao-Mei(赵小梅). Chin. Phys. B, 2009, 18(12): 5242-5248.
[7] Instantaneous information propagation in free flow, synchronized flow, stop-and-go waves in a cellular automaton model
Jiang Rui(姜锐), Jin Wen-Long(金文龙), and Wu Qing-Song(吴清松) . Chin. Phys. B, 2008, 17(3): 829-835.
[8] An implementation of cellular automaton model for single-line train working diagram
Hua Wei (花伟), Liu Jun. Chin. Phys. B, 2006, 15(4): 687-691.
No Suggested Reading articles found!