Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120306    DOI: 10.1088/1674-1056/20/12/120306
GENERAL Prev   Next  

Classical behaviour of various variables in an open Bose–Hubbard system

Nikola Burić
Institute of Physics, University of Belgrade, P O BOX 68, 11000 Belgrade, Serbia
Abstract  Quantum dispersions of various sets of dynamical variables of an open Bose-Hubbard system in a classical limit are studied. To this end, an open system is described in terms of stochastic evolution of its quantum pure states. It is shown that the class of variables that display classical behaviour crucially depends on the type of noise. This is relevant in the mean-field approximation of open Bose-Hubbard dynamics.
Keywords:  quantum trajectories      decoherence      classical limit  
Received:  25 February 2011      Revised:  06 July 2011      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
Fund: Project supported in part by the Ministry of Education and Science of the Republic of Serbia (Grant No. ON171017).

Cite this article: 

Nikola Burić Classical behaviour of various variables in an open Bose–Hubbard system 2011 Chin. Phys. B 20 120306

[1] Leggett A J 2001 Rev. Mod. Phys. 73 307
[2] Pethich C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[3] Albiez M, Gati R, Fddotolling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. bf 95 010402
[4] Gati R, Hemmerling B, Fddotolling J, Albiez M and Oberthaler M K 2006 Phys. Rev. Lett. 96 130404
[5] Fddotolling S, Trotzky S, Cheinet P, Feld M M, Saers R, Widera A, Mddotuller T and Bloch I 2007 Nature 448 1029
[6] Trotzky S, Cheinet P, Fddotolling S, Feld M, Schnorrberger U, Roy A M, Polkovnikov A, Demler E A, Lukin M D and Bloch I 2008 Science 319 295
[7] Ji A C, Liu W M, Song J and Zhou L F 2008 Phys. Rev. Lett. 101 010402
[8] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[9] Xie Z W and Liu W M 2004 Phys. Rev. A 70 045602
[10] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1987 Phys. Rev. B 40 546
[11] Trimborn F, Witthaut D and Korsch H J 2009 Phys. Rev. A 79 013608
[12] Anglin J R 1997 Phys. Rev. Lett. 79 6
[13] Steel M J, Olsen M, Plimak L, Drummond P D, Tan S, Collet M J, Walls D F and Graham R 1998 Phys. Rev. A 58 4824
[14] Roustekoski J and Walls D F 1998 Phys. Rev. A 58 R50
[15] Zurek W H 2003 Rev. Mod. Phys. 73 715
[16] Breuer H P and Petruccione F 2001 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[17] Percival I C 1999 Quantum State Difussion (Cambridge: Cambridge University Press)
[18] Belavkin V P 1999 Rep. Math. Phys. 43 405
[19] Carmichael H J 1983 An Open Systems Approach to Quantum Optics (Berlin: Springer-Verlag)
[20] Wiseman H M and Milburn G 1993 Phys. Rev. A bf 47 642
[21] Molmer K, Castin Y and Dalibar J 1993 J. Opt. Soc. Am. B 10 524
[22] Buric N 2005 Phys. Rev. A 72 042322
[23] Buric N 2009 Phys. Rev. A 80 014102
[24] Perelomov A M 1986 Generalzed Coherent States and Their Applications (Berlin: Springer-Verlag)
[25] Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
[26] Trimborn F, Witthaut D and Korsch H J 2008 Phys. Rev. A 77 043631
[27] Khasin M and Kosloff R 2008 Phys. Rev. A 78 012321
[28] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Krüger P 2005 Nat. Phys. 1 57
[29] Witthaut D, Trimborn F and Wimberger S 2009 Phys. Rev. A 79 033621
[30] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[31] Lindblad G 1976 Commun. Math. Phys. 48 119
[32] Halliwell J and Zoupas A 1995 Phys. Rev. D 52 7294
[33] Di' osi L, Gisin N, Halliwell J and Percival I C 1995 Phys. Rev. Lett. 74 203
[34] Braun T A, Pecival I C and Schack R 1996 J. Phys. A. Math. Gen. 29 2077
[35] Strunz W T and Percival I C 1998 J. Phys. A: Math. Gen. 31 1801
[36] Bhattacharya T, Habib S and Jacobs K 2003 Phys. Rev. A 67 042103
[37] Buric N 2006 Phys. Rev. A 73 052111
[38] Buric N 2008 Ann. Phys. (NY) 323 17
[39] Buric N 2009 Phys. Rev. A 79 022101
[40] Everitt M J 2009 New J. Phys. 11 013014
[41] Schack R, Brun T A and Percival I C 1996 Phys. Rev. A 53 2694
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[6] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[7] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[8] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[9] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[10] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[13] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
[14] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[15] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
No Suggested Reading articles found!