Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 116301    DOI: 10.1088/1674-1056/20/11/116301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Acoustic band pinning in the phononic crystal plates of anti-symmetric structure

Cai Chen(蔡琛)a), Zhu Xue-Feng(祝雪丰)a), Chen Qian(陈谦)a), Yuan Ying(袁樱)b), Liang Bin(梁彬) a), and Cheng Jian-Chun(程建春)a)†
a Key Laboratory of Modern Acoustics, Ministry of Education, and Institute of Acoustics, Nanjing University, Nanjing 210093, China; b School of Mathematics and Physics, Jiangsu Teachers University of Technology, Changzhou 213001, China
Abstract  Acoustic bands are studied numerically for a Lamb wave propagating in an anti-symmetric structure of a one-dimensional periodic plate by using the method of supercell plane-wave expansion. The results show that all the bands are pinned in pairs at the Brillouin zone boundary as long as the anti-symmetry remains and acoustic band gaps (ABGs) only appear between certain bands. In order to reveal the relationship between the band pinning and the anti-symmetry, the method of eigenmode analysis is introduced to calculate the displacement fields of different plate structures. Further, the method of harmony response analysis is employed to calculate the reference spectra to verify the accuracy of numerical calculations of acoustic band map, and both the locations and widths of ABGs in the acoustic band map are in good agreement with those of the reference spectra. The investigations show that the pinning effect is very sensitive to the anti-symmetry of periodic plates, and by introducing different types of breakages, more ABGs or narrow pass bands will appear, which is meaningful in band gap engineering.
Keywords:  Lamb wave      phononic crystal      anti-symmetric structure      band structures  
Received:  27 April 2011      Revised:  01 June 2011      Accepted manuscript online: 
PACS:  63.20.-e (Phonons in crystal lattices)  
  62.65.+k (Acoustical properties of solids)  
  43.20.+g (General linear acoustics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB327803), the National Natural Science Foundation of China (Grant Nos. 10874086, 10834009, and 10904068), the Science Foundation of the Ministry of Education of China (Grant No. 705017), and the Fundamental Research Funds for the Central Universities, China (Grant No. 1085020401).

Cite this article: 

Cai Chen(蔡琛), Zhu Xue-Feng(祝雪丰), Chen Qian(陈谦), Yuan Ying(袁樱), Liang Bin(梁彬), and Cheng Jian-Chun(程建春) Acoustic band pinning in the phononic crystal plates of anti-symmetric structure 2011 Chin. Phys. B 20 116301

[1] Zhu X F, Liang B, Kan W W, Zou X Y and Cheng J C 2011 Phys. Rev. Lett. 106 014301
[2] Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G and Wen X S 2008 Chin. Phys. B 17 1305
[3] Zhu X F, Liu S C, Xu T, Wang T H and Cheng J C 2010 Chin. Phys. B 19 044301
[4] Zhu X F, Zou X Y, Liang B and Cheng J C 2010 J. Appl. Phys. 108 124909
[5] Mohammadi S, Eftekhar A A, Khelif A, Hunt W D and Adibi A 2009 Appl. Phys. Lett. 94 051906
[6] Wu T T, Huang Z G, Tsai T C and Wu T C 2008 Appl. Phys. Lett. 93 111902
[7] Wu T C, Wu T T and Hsu J C 2009 Phys. Rev. B 79 104306
[8] Wu T T and Huang Z G 2004 Phys. Rev. B 70 214304
[9] Hou Z L and Assouar B M 2008 J. Phys. D: Appl. Phys. 41 215102
[10] Zhu X F, Xu T, Liu S C and Cheng J C 2009 J. Appl. Phys. 106 104901
[11] Elastic constants CA11 = 50.20times 1010, CA12 = 19.90×1010, CA44 = 15.20×1010 (in units of N/m2), and mass density ρ = 19200 kg/m3 for tungsten. Elastic constants CB11 = 16.57×1010, CB12 = 6.390×1010, CB44 = 7.956×1010 (in units of N/m2), and mass density ρ = 2332 kg/m3 for silicon.
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[3] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[4] Assessment of cortical bone fatigue using coded nonlinear ultrasound
Duwei Liu(刘度为), Boyi Li(李博艺), Dongsheng Bi(毕东生), Tho N. H. T. Tran, Yifang Li(李义方), Dan Liu(刘丹), Ying Li(李颖), and Dean Ta(他得安). Chin. Phys. B, 2021, 30(9): 094301.
[5] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[6] Location of micro-cracks in plates using time reversed nonlinear Lamb waves
Yaoxin Liu(刘尧鑫), Aijun He(何爱军), Jiehui Liu(刘杰惠), Yiwei Mao(毛一葳), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(5): 054301.
[7] Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation
Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(1): 014302.
[8] Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates
Hui Zhang(张辉), Hai-Yan Zhang(张海燕), Meng-Yun Xu(徐梦云), Guo-Peng Fan(范国鹏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2019, 28(7): 074301.
[9] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[10] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
[11] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[12] Lamb wave signal selective enhancement by an improved design of meander-coil electromagnetic acoustic transducer
Wen-Xiu Sun(孙文秀), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Zheng-Wu Xia(夏正武). Chin. Phys. B, 2018, 27(8): 084301.
[13] Generation of narrowband Lamb waves based on the Michelson interference technique
Tian-Ming Ye(叶天明), Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2018, 27(5): 054301.
[14] Power flow analysis in a hybrid phononic crystal structure
Hanbei Guo(郭寒贝), Qiang Li(李强), Liubin Zhou(周刘彬), Lei Qiang(强磊). Chin. Phys. B, 2018, 27(3): 036302.
[15] Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals
Han-Bo Shao(邵瀚波), Guo-Ping Chen(陈国平), Huan He(何欢), Jin-Hui Jiang(姜金辉). Chin. Phys. B, 2018, 27(12): 126301.
No Suggested Reading articles found!