INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes |
Liang De-Chun(梁德春), An Qi(安琪), Jin Peng(金鹏)†, Li Xin-Kun(李新坤), Wei Heng(魏恒), Wu Ju(吴巨), and Wang Zhan-Guo(王占国) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.
|
Received: 24 March 2011
Revised: 09 May 2011
Accepted manuscript online:
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60876086, 60976057, and 60776037). |
Cite this article:
Liang De-Chun(梁德春), An Qi(安琪), Jin Peng(金鹏), Li Xin-Kun(李新坤), Wei Heng(魏恒), Wu Ju(吴巨), and Wang Zhan-Guo(王占国) Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes 2011 Chin. Phys. B 20 108503
|
[1] |
Hee M R, Izatt J A, Swanson E A, Huang D, Schuman J S, Lin C P, Puliafito C A and Fujimoto J G 1995 IEEE Eng. Med. Biol. 14 67
|
[2] |
Wang K, Zeng Y, Ding Z H, Meng J, Shi G H and Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese)
|
[3] |
Liang Y M, Zhou D C, Meng F Y and Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)
|
[4] |
Brezinski M E and Fujimoto J G 1999 IEEE J. Sel. Topics Quantum Electron. 5 1185
|
[5] |
Dou X M, Sun B Q, Huang S S, Ni H Q, Niu Z C, Yang F H and Jia R 2009 Chin. Phys. B 18 2258
|
[6] |
Li Y, Dou X M, Chang X Y, Ni H Q, Niu Z C and Sun B Q 2011 Acta Phys. Sin. 60 017804 (in Chinese)
|
[7] |
Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
|
[8] |
Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
|
[9] |
Liu N, Jin P and Wang Z G 2005 Electron. Lett. 41 1400
|
[10] |
Lü X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
|
[11] |
Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
|
[12] |
Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[13] |
Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
|
[14] |
Fedorova K A, Cataluna M A, Krestnikov I, Livshits D and Rafailov E U 2010 Opt. Express 18 19438
|
[15] |
Zhang Z Y, Hogg R A, Lü X Q and Wang Z G 2010 Adv. Opt. Photon. 2 201
|
[16] |
Krstaji'c N, Smith L E, Matcher S J, Childs D T D, Bonesi M, Greenwood P D L, Hugues M, Kennedy K, Hopkinson M, Groom K M, MacNeil S, Hogg R A and Smallwood R 2010 IEEE J. Sel. Topics Quantum Electron. 16 748
|
[17] |
Greenwood P D L, Childs D T D, Kennedy K, Groom K M, Hugues M, Hopkinson M, Hogg R A, Krstaji'c N, Smith L E, Matcher S J, Bonesi M, MacNeil S and Smallwood R 2010 IEEE J. Sel. Topics Quantum Electron. 16 1015
|
[18] |
Baklenov O, Huffaker D L, Anselm A, Deppe D G and Streetman B G 1997 J. Appl. Phys. 82 6362
|
[19] |
Schlereth T W, Schneider C, Höfling S and Forchel A 2008 Nanotechnology 19 045601
|
[20] |
Schlereth T W, Schneider C, Gerhard S, Höfling S and Forchel A 2009 IEEE J. Sel. Topics Quantum Electron. 15 792
|
[21] |
Lin C F and Juang C S 1996 IEEE Photon. Technol. Lett. 8 206
|
[22] |
Ustinov V M, Zhukov A E, Egorov A Yu and Maleev N A 2003 Quantum Dot Lasers (New York: Oxford)
|
[23] |
Liu H Y, Sellers I R, Airey R J, Steer M J, Houston P A, Mowbray D J, Cockburn J, Skolnick M S, Xu B and Wang Z G 2002 Appl. Phys. Lett. 80 3769
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|