Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114218    DOI: 10.1088/1674-1056/20/11/114218
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Numerical simulation of a gradient-index fibre probe and its properties of light propagation

Wang Chi(王驰)a)†, Mao You-Xin(毛幼馨) b), Tang Zhi(唐智)a), Fang Chen(方臣)a), Yu Ying-Jie(于瀛洁)a), and Qi Bo(齐博)c)
a Department of Precision Mechanical Engineering, Shanghai University, Shanghai 200072, China; b Institute for Microstructural Sciences, National Research Council Canada, Ottawa, Canada; c Key laboratory of Specialty Fiber Optics and Optical Access Network, Shanghai University , Shanghai 200072, China
Abstract  In order to verify the properties of the light propagating through a gradient-index (GRIN) fibre probe for optical coherence tomography (OCT), numerical simulation using the optical software GLAD is carried out. Firstly, the model of the GRIN fibre probe is presented, which is consisted of a single mode fibre (SMF), a no-core fibre (NCF), a GRIN fibre lens and an air path. Then, the software GLAD is adopted to numerically investigate how the lengths of the NCF and the GRIN fibre lens influence the performance of the Gaussian beam focusing through the GRIN fibre probe. The simulation results are well consistent with the experimental ones, showing that the GLAD based numerical simulation technique is an intuitive and effective tool for the verification of the properties of the light propagation. In this paper, we find that on the conditions of a constant GRIN fibre lens length of 0.1 mm and an NCF length of 0.36 mm, the working distance of the probe will be 0.75 mm and the focus spot size is 32 μm.
Keywords:  optical coherence tomography      gradient-index fibre probe      gradient-index lens      GLAD  
Received:  14 April 2011      Revised:  26 May 2011      Accepted manuscript online: 
PACS:  42.79.Ry (Gradient-index (GRIN) devices)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.55.Wd (Fiber lasers)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the International Cooperation Project of Shanghai Science and Technology Committee, China (Grant No. 09530708700).

Cite this article: 

Wang Chi(王驰), Mao You-Xin(毛幼馨), Tang Zhi(唐智), Fang Chen(方臣), Yu Ying-Jie(于瀛洁), and Qi Bo(齐博) Numerical simulation of a gradient-index fibre probe and its properties of light propagation 2011 Chin. Phys. B 20 114218

[1] Huang D, Swanson E A and Lin C P 1991 Science 254 1178
[2] Yang Y L, Ding Z H and Meng J 2008 Acta Opt. Sin. 28 955 (in Chinese)
[3] Swanson E, Petersen C L and McNamara E (U.S. Patent) 6 445 [2002-09-03]
[4] Reed W A, Yan M F and Schnitzer M J 2002 Opt. Lett. 27 1794
[5] Jafri M S, Farhang S and Tang R S 2005 J. Biomed. Opt. 10 051603
[6] Li H, Standish B A and Mariampillai A 2006 Lasers Surgery Med. 38 754
[7] Mao Y X, Chang S D and Sherif S 2007 Appl. Opt. 46 5887
[8] Mao Y X, Chang S D and Flueraru C 2010 J. Biomed. Sci. Eng. 3 27
[9] Kogelnik H W and Li T 1966 Appl. Opt. 5 1550
[10] Emkey W L and Jack C A 1987 J. Lightwave Technol. LT-5 1156
[11] Li H M 2008 Chin. Phys. B 17 759
[12] Liu A J, Qu H W and Chen W J 2011 Chin. Phys. B 20 024204
[13] Li J L and Lv B D 2008 Acta Phys. Sin. 57 1656 (in Chinese)
[14] Lu S Z, You K M and Chen L Z 2011 Chin. Phys. B 20 034202
[15] Wang K, Zeng Y And Ding Z H 2010 Acta Phy. Sin. 59 2472 (in Chinese)
[16] Jung W, Benalcazar W and Ahmad A 2010 J. Biomed. Opt. 15 066027
[1] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
[2] Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes
Liang De-Chun(梁德春), An Qi(安琪), Jin Peng(金鹏), Li Xin-Kun(李新坤), Wei Heng(魏恒), Wu Ju(吴巨), and Wang Zhan-Guo(王占国) . Chin. Phys. B, 2011, 20(10): 108503.
No Suggested Reading articles found!