|
|
Electronic structure and infrared spectrum of a WnC0,± (n=1–6) cluster |
Zhang Xiu-Rong(张秀荣)a)†, Kang Zhang-Li(康张李)a), and Guo Wen-Lu(郭文录) b) |
a School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, China; b School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
|
|
Abstract WnC0,± (n=1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0,± (n=2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0,± (n=1-6) clusters are also discussed.
|
Received: 20 February 2011
Revised: 17 April 2011
Accepted manuscript online:
|
PACS:
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
36.40.Vz
|
(Optical properties of clusters)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51072072). |
Cite this article:
Zhang Xiu-Rong(张秀荣), Kang Zhang-Li(康张李), and Guo Wen-Lu(郭文录) Electronic structure and infrared spectrum of a WnC0,± (n=1–6) cluster 2011 Chin. Phys. B 20 103601
|
[1] |
Pol S V, Pol V G and Gedanken A 2006 Adv. Mater. 18 2023
|
[2] |
Keller N, Pietruszka B and Keller V 2006 Mater. Lett. 60 1774
|
[3] |
Zhao Z G and Miyauchi M 2008 Angew. Chem. Int. Ed. 47 7051
|
[4] |
Karre P S K, Acharya M, Knudsen W R and Bergstrom P L 2008 IEEE Sens. J. 8 797
|
[5] |
Kida T, Nishiyama A, Yuasa M, Shimanoe K and Yamazoe N 2009 Sensor. Actuat. B: Chem. 135 568
|
[6] |
Liang C, Ding L, Wang A, Ma Z and Qiu J 2009 Ind. Eng. Chem. Res. 48 3244
|
[7] |
Guo Z, Lu B, Jiang X and Zhao J J 2011 Acta Phys. Sin. 60 013601 (in Chinese)
|
[8] |
Gu J, Wang S Y and Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)
|
[9] |
Scharf T W, Romanes M C, Mahdak K C, Hwang J Y, Banerjee R, Evans R D and Doll G L 2008 Appl. Phys. Lett. 93 151909
|
[10] |
Abad M D, S'anchez-L'opez J C, Cusnir N and Sanjines R 2009 J. Appl. Phys. 105 033510
|
[11] |
Weidele H, Kreisle D, Recknagel E, Icking-Konert G S, Handschuh H, Gantefor G and Eberhardt W 1995 Chem. Phys. Lett. 237 425
|
[12] |
Zhang X R, Ding X L, Dai B and Yang J L 2005 J. Mol. Struct.: Theochem 757 113
|
[13] |
Zhang X R, Ding X L and Yang J L 2005 Int. J. Mod. Phys. B 19 2427
|
[14] |
Du J, Sun X, Meng D, Zhang P and Jiang G 2009 J. Chem. Phys. 131 044313
|
[15] |
Borin A C, Gobbo J P and Roos B O 2010 Chem. Phys. Lett. 490 24
|
[16] |
Sherrill C D and Piecuch P 2005 J. Chem. Phys. 122 124104
|
[17] |
Olga G and Leeor K 2007 J. Chem. Phys. A 111 2028
|
[18] |
Wang X R and Zheng H P 2009 Chin. Phys. B 18 1968
|
[19] |
Zhang C R, Chen H S, Song Y and Xu G J 2007 Chin. Phys. 16 2394
|
[20] |
Shane M S, Adam W S and Michael D M 2002 J. Chem. Phys. 116 993
|
[21] |
Fei Q, Liu S, Hui G and Yun Z 1999 Acta Chim. Phys. Sin. 12 525
|
[22] |
Li X, Liu S S, Chen W and Wang L 1999 J. Chem. Phys. 111 2464
|
[23] |
Rothgeb D, Hossain E and Jarrold C C 2008 J. Chem. Phys. 129 114304
|
[24] |
Samuel J, Peppernick K D, Gunaratne D and Castleman A W 2010 Chem. Phys. Lett. 489 1
|
[25] |
Balasubramanian K 2000 J. Chem. Phys. 112 7425
|
[26] |
Stevens F, Carmichael I, Callens F and Waroquier M 2006 J. Chem. Phys. A 110 4846
|
[27] |
Wang J, Sun X and Wu Z 2007 J. Cluster Sci. 18 333
|
[28] |
Zhang X R, Ding X L, Fu Q and Yang J L 2008 J. Mol. Struct.: Theochem 867 17
|
[29] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian 03 Revision B.04, Gaussian, Inc., Pittsburgh, PA
|
[30] |
Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270
|
[31] |
Zhang Z X, Cao B B and Duan H M 2008 J. Mol. Struct.: Theochem 863 22
|
[32] |
Gutsev G L and Bauschlicher C W 2003 Chem. Phys. 291 27
|
[33] |
Zhang X R, Liu X F and Kang Z L 2010 J. At. Mol. Phys. 27 869 (in Chinese)
|
[34] |
Zhang X R, Gao C H, Wu L Q and Tang H S 2010 Acta Phys. Sin. 59 5429 (in Chinese)
|
[35] |
Li X, Wang H, Yang X, Zhu Z and Tang Y 2007 J. Chem. Phys. 126 084504
|
[36] |
Karamanis P, Xenides D and Leszczynski J 2008 J. Chem. Phys. 129 094708
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|