Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 103601    DOI: 10.1088/1674-1056/20/10/103601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electronic structure and infrared spectrum of a WnC0,± (n=1–6) cluster

Zhang Xiu-Rong(张秀荣)a)†, Kang Zhang-Li(康张李)a), and Guo Wen-Lu(郭文录) b)
a School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, China; b School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract  WnC0,± (n=1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0,± (n=2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0,± (n=1-6) clusters are also discussed.
Keywords:  WnC (n=1-6) clusters      electronic structure      infrared spectrum      density functional theory   
Received:  20 February 2011      Revised:  17 April 2011      Accepted manuscript online: 
PACS:  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.40.Vz (Optical properties of clusters)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51072072).

Cite this article: 

Zhang Xiu-Rong(张秀荣), Kang Zhang-Li(康张李), and Guo Wen-Lu(郭文录) Electronic structure and infrared spectrum of a WnC0,± (n=1–6) cluster 2011 Chin. Phys. B 20 103601

[1] Pol S V, Pol V G and Gedanken A 2006 Adv. Mater. 18 2023
[2] Keller N, Pietruszka B and Keller V 2006 Mater. Lett. 60 1774
[3] Zhao Z G and Miyauchi M 2008 Angew. Chem. Int. Ed. 47 7051
[4] Karre P S K, Acharya M, Knudsen W R and Bergstrom P L 2008 IEEE Sens. J. 8 797
[5] Kida T, Nishiyama A, Yuasa M, Shimanoe K and Yamazoe N 2009 Sensor. Actuat. B: Chem. 135 568
[6] Liang C, Ding L, Wang A, Ma Z and Qiu J 2009 Ind. Eng. Chem. Res. 48 3244
[7] Guo Z, Lu B, Jiang X and Zhao J J 2011 Acta Phys. Sin. 60 013601 (in Chinese)
[8] Gu J, Wang S Y and Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)
[9] Scharf T W, Romanes M C, Mahdak K C, Hwang J Y, Banerjee R, Evans R D and Doll G L 2008 Appl. Phys. Lett. 93 151909
[10] Abad M D, S'anchez-L'opez J C, Cusnir N and Sanjines R 2009 J. Appl. Phys. 105 033510
[11] Weidele H, Kreisle D, Recknagel E, Icking-Konert G S, Handschuh H, Gantefor G and Eberhardt W 1995 Chem. Phys. Lett. 237 425
[12] Zhang X R, Ding X L, Dai B and Yang J L 2005 J. Mol. Struct.: Theochem 757 113
[13] Zhang X R, Ding X L and Yang J L 2005 Int. J. Mod. Phys. B 19 2427
[14] Du J, Sun X, Meng D, Zhang P and Jiang G 2009 J. Chem. Phys. 131 044313
[15] Borin A C, Gobbo J P and Roos B O 2010 Chem. Phys. Lett. 490 24
[16] Sherrill C D and Piecuch P 2005 J. Chem. Phys. 122 124104
[17] Olga G and Leeor K 2007 J. Chem. Phys. A 111 2028
[18] Wang X R and Zheng H P 2009 Chin. Phys. B 18 1968
[19] Zhang C R, Chen H S, Song Y and Xu G J 2007 Chin. Phys. 16 2394
[20] Shane M S, Adam W S and Michael D M 2002 J. Chem. Phys. 116 993
[21] Fei Q, Liu S, Hui G and Yun Z 1999 Acta Chim. Phys. Sin. 12 525
[22] Li X, Liu S S, Chen W and Wang L 1999 J. Chem. Phys. 111 2464
[23] Rothgeb D, Hossain E and Jarrold C C 2008 J. Chem. Phys. 129 114304
[24] Samuel J, Peppernick K D, Gunaratne D and Castleman A W 2010 Chem. Phys. Lett. 489 1
[25] Balasubramanian K 2000 J. Chem. Phys. 112 7425
[26] Stevens F, Carmichael I, Callens F and Waroquier M 2006 J. Chem. Phys. A 110 4846
[27] Wang J, Sun X and Wu Z 2007 J. Cluster Sci. 18 333
[28] Zhang X R, Ding X L, Fu Q and Yang J L 2008 J. Mol. Struct.: Theochem 867 17
[29] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian 03 Revision B.04, Gaussian, Inc., Pittsburgh, PA
[30] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270
[31] Zhang Z X, Cao B B and Duan H M 2008 J. Mol. Struct.: Theochem 863 22
[32] Gutsev G L and Bauschlicher C W 2003 Chem. Phys. 291 27
[33] Zhang X R, Liu X F and Kang Z L 2010 J. At. Mol. Phys. 27 869 (in Chinese)
[34] Zhang X R, Gao C H, Wu L Q and Tang H S 2010 Acta Phys. Sin. 59 5429 (in Chinese)
[35] Li X, Wang H, Yang X, Zhu Z and Tang Y 2007 J. Chem. Phys. 126 084504
[36] Karamanis P, Xenides D and Leszczynski J 2008 J. Chem. Phys. 129 094708
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!